Suppr超能文献

基于步态运动学数据的两种聚类与年龄相关组的混合方法的验证。

Validation of two hybrid approaches for clustering age-related groups based on gait kinematics data.

机构信息

Institute of General Mechanics, RWTH Aachen University, Germany.

Polytechnic School of Engineering University of Pernambuco, Recife, Brazil.

出版信息

Med Eng Phys. 2020 Apr;78:90-97. doi: 10.1016/j.medengphy.2020.02.001. Epub 2020 Feb 19.

Abstract

Age-associated changes in walking parameters are relevant to recognize functional capacity and physical performance. However, the sensible nuances of slightly different gait patterns are hardly noticeable by inexperienced observers. Due to the complexity of this evaluation, we aimed at verifying the efficiency of applied hybrid-adaptive algorithms to cluster groups with similar gait patterns. Based on self-organizing maps (SOM), k-means clustering (KM), and fuzzy c-means (FCM), we compared the hybrid algorithms to a conventional FCM approach to cluster accordingly age-related groups. Additionally, we performed a relevance analysis to identify the principal gait characteristics. Our experiments, based on inertial-sensors data, comprised a sample of 180 healthy subjects, divided into age-related groups. The outcomes suggest that our methods outperformed the FCM algorithm, demonstrating a high accuracy (88%) and consistent sensitivity also to distinguish groups that presented a significant difference (p < .05) only in one of the six observed gait features. The applied algorithms showed a compatible performance, but the SOM + KM required less computation cost and, therefore, was more efficient. Furthermore, the results indicate the overall importance of cadence, as a measurement of physical performance, especially when clustering subjects by their age. Such output provides valuable information to healthcare professionals, concerning the subject's physical performance related to his age, supporting and guiding the physical evaluation.

摘要

与识别功能能力和身体表现相关的是与年龄相关的步行参数变化。然而,经验不足的观察者很难注意到略有不同的步态模式的细微差别。由于这种评估的复杂性,我们旨在验证应用混合自适应算法对具有相似步态模式的群体进行聚类的效率。基于自组织映射(SOM)、k-均值聚类(KM)和模糊 c-均值(FCM),我们将混合算法与传统的 FCM 方法进行了比较,以相应地对与年龄相关的群体进行聚类。此外,我们进行了相关性分析,以确定主要的步态特征。我们的实验基于惯性传感器数据,包含 180 名健康受试者的样本,分为与年龄相关的组。结果表明,我们的方法优于 FCM 算法,准确率高达 88%,对仅在六个观察到的步态特征之一中存在显著差异的组的区分也具有一致性的敏感性(p <.05)。所应用的算法表现出兼容的性能,但 SOM + KM 需要更少的计算成本,因此更有效。此外,结果表明步频的整体重要性,作为身体表现的测量,尤其是在根据年龄对受试者进行聚类时。这样的输出为医疗保健专业人员提供了有价值的信息,涉及到与年龄相关的身体表现,支持和指导身体评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验