Suppr超能文献

基于模糊聚类算法的大学生心理健康支持。

College Students' Mental Health Support Based on Fuzzy Clustering Algorithm.

机构信息

China Academy of Art, Hangzhou, Zhejiang 310002, China.

出版信息

Contrast Media Mol Imaging. 2022 Aug 16;2022:5374111. doi: 10.1155/2022/5374111. eCollection 2022.

Abstract

There are some problems in the active participation of college students in ideological and mental health support services in China, such as low attention, low participation, and high data redundancy. Based on this, this paper studies the active participation of college students' ideological and mental health support service based on fuzzy cluster analysis algorithm. Compared with the disadvantages of the current mainstream discrete optimization analysis models on mental health (such as high-dimensional enterprise model, Dajiaweikang model, and short-range group control model), which need to set the known data gradient interval, this paper creatively adopts the fuzzy cluster analysis algorithm, based on the characteristics of different types of college students' ideological and mental health problems. Combined with the improved star discrete analysis model, this paper constructs the active participatory evaluation strategy of college students' ideological and mental health support services. On this basis, the model can not only record and store the participatory data of ideological and mental health support for students of different grades but also match and track different types of data based on special framework conditions, so as to achieve numerical normal analysis and directional matching for the data coupling mode of college students' ideological and mental health support services. On the other hand, the Planck constant factor is used to classify different types of ideological and psychological factor data, and combined with the idea of fuzzy clustering, the hierarchical analysis and quantitative calibration of different types of data groups are realized, so as to improve the reliability and authenticity of the active participation in college students' mental health support services. The results show that this star discrete analysis model can analyze the active participation of college students' ideological and mental health support services according to the data matching degree of different levels and can effectively improve the analysis efficiency of data vectors. Compared with the traditional research methods on the active participation of college students' ideological and mental health support services, this method can realize the matching and tracking of different types of data, so as to make a numerical and normal analysis on the data coupling mode of college students' ideological and mental health support services.

摘要

在中国,大学生积极参与心理健康支持服务存在一些问题,如关注度低、参与度低、数据冗余度高。基于此,本文基于模糊聚类分析算法研究大学生心理健康支持服务的积极参与。与当前主流的心理健康离散优化分析模型(如大佳维康模型、短程群控模型等)相比,这些模型需要设置已知数据梯度间隔,本文创造性地采用模糊聚类分析算法,根据大学生心理健康问题的不同类型的特点,结合改进的星型离散分析模型,构建大学生心理健康支持服务的积极参与评价策略。在此基础上,该模型不仅可以记录和存储不同年级学生心理健康支持的参与数据,还可以根据特殊框架条件对不同类型的数据进行匹配和跟踪,从而实现对大学生心理健康支持服务数据耦合模式的数值正常分析和定向匹配。另一方面,利用普朗克常数因子对不同类型的思想心理因素数据进行分类,结合模糊聚类思想,实现不同类型数据组的层次分析和定量校准,从而提高大学生心理健康支持服务积极参与的可靠性和真实性。结果表明,该星型离散分析模型可以根据不同层次的数据匹配度分析大学生心理健康支持服务的积极参与情况,有效提高数据向量的分析效率。与传统的大学生心理健康支持服务积极参与研究方法相比,该方法可以实现不同类型数据的匹配和跟踪,从而对大学生心理健康支持服务的数据耦合模式进行数值和正常分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f95/9398770/cd8d9c46e05c/CMMI2022-5374111.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验