School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China.
School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
Bioinformatics. 2020 May 1;36(10):2986-2992. doi: 10.1093/bioinformatics/btaa074.
The studies have indicated that not only microRNAs (miRNAs) or long non-coding RNAs (lncRNAs) play important roles in biological activities, but also their interactions affect the biological process. A growing number of studies focus on the miRNA-lncRNA interactions, while few of them are proposed for plant. The prediction of interactions is significant for understanding the mechanism of interaction between miRNA and lncRNA in plant.
This article proposes a new method for fulfilling plant miRNA-lncRNA interaction prediction (PmliPred). The deep learning model and shallow machine learning model are trained using raw sequence and manually extracted features, respectively. Then they are hybridized based on fuzzy decision for prediction. PmliPred shows better performance and generalization ability compared with the existing methods. Several new miRNA-lncRNA interactions in Solanum lycopersicum are successfully identified using quantitative real time-polymerase chain reaction from the candidates predicted by PmliPred, which further verifies its effectiveness.
The source code of PmliPred is freely available at http://bis.zju.edu.cn/PmliPred/.
Supplementary data are available at Bioinformatics online.
研究表明,不仅 microRNAs(miRNAs)或长非编码 RNA(lncRNAs)在生物活性中发挥重要作用,而且它们的相互作用也会影响生物过程。越来越多的研究关注 miRNA-lncRNA 的相互作用,而针对植物的研究却很少。相互作用的预测对于理解 miRNA 和 lncRNA 在植物中的相互作用机制具有重要意义。
本文提出了一种新的植物 miRNA-lncRNA 相互作用预测方法(PmliPred)。使用原始序列和人工提取的特征分别训练深度学习模型和浅层机器学习模型,然后基于模糊决策进行混合预测。与现有方法相比,PmliPred 具有更好的性能和泛化能力。通过从 PmliPred 预测的候选物中进行定量实时聚合酶链反应,成功鉴定了番茄中的几个新的 miRNA-lncRNA 相互作用,进一步验证了其有效性。
PmliPred 的源代码可在 http://bis.zju.edu.cn/PmliPred/ 上免费获取。
补充数据可在 Bioinformatics 在线获取。