InnovationLab, Speyerer Straße 4, 69115, Heidelberg, Germany.
Institute for High-Frequency Technology, TU Braunschweig, Schleinitzstr. 22, 38106, Braunschweig, Germany.
Adv Mater. 2017 Aug;29(30). doi: 10.1002/adma.201701466. Epub 2017 Jun 6.
Stable electrical doping of organic semiconductors is fundamental for the functionality of high performance devices. It is known that dopants can be subjected to strong diffusion in certain organic semiconductors. This work studies the impact of operating conditions on thin films of the polymer poly(3-hexylthiophene) (P3HT) and the small molecule Spiro-MeOTAD, doped with two differently sized p-type dopants. The negatively charged dopants can drift upon application of an electric field in thin films of doped P3HT over surprisingly large distances. This drift is not observed in the small molecule Spiro-MeOTAD. Upon the dopants' directional movement in P3HT, a dedoped region forms at the negatively biased electrode, increasing the overall resistance of the thin film. In addition to electrical measurements, optical microscopy, spatially resolved infrared spectroscopy, and scanning Kelvin probe microscopy are used to investigate the drift of dopants. Dopant mobilities of 10 to 10 cm V s are estimated. This drift over several micrometers is reversible and can be controlled. Furthermore, this study presents a novel memory device to illustrate the applicability of this effect. The results emphasize the importance of dynamic processes under operating conditions that must be considered even for single doped layers.
稳定的有机半导体电掺杂对于高性能器件的功能至关重要。已知掺杂剂在某些有机半导体中可能会受到强烈的扩散。这项工作研究了操作条件对聚合物聚(3-己基噻吩)(P3HT)和小分子 Spiro-MeOTAD 薄膜的影响,这两种薄膜都掺杂了两种不同尺寸的 p 型掺杂剂。在掺杂的 P3HT 薄膜中施加电场时,带负电荷的掺杂剂可以在惊人的大距离上漂移。这种漂移在小分子 Spiro-MeOTAD 中是观察不到的。当掺杂剂在 P3HT 中定向移动时,在带负电的电极处形成一个去掺杂区域,从而增加了薄膜的总电阻。除了进行电学测量之外,还使用光学显微镜、空间分辨红外光谱和扫描 Kelvin 探针显微镜来研究掺杂剂的漂移。估计掺杂剂的迁移率为 10 到 10 cm V s。这种跨越数微米的漂移是可逆的并且可以控制。此外,这项研究还提出了一种新型的存储器件,以说明这种效应的适用性。研究结果强调了即使对于单层掺杂,操作条件下的动态过程的重要性,这一点必须加以考虑。