Suppr超能文献

MALINI(神经影像学中的机器学习):一个用于借助静息态功能磁共振成像数据辅助临床诊断的MATLAB工具箱。

MALINI (Machine Learning in NeuroImaging): A MATLAB toolbox for aiding clinical diagnostics using resting-state fMRI data.

作者信息

Lanka Pradyumna, Rangaprakash D, Gotoor Sai Sheshan Roy, Dretsch Michael N, Katz Jeffrey S, Denney Thomas S, Deshpande Gopikrishna

机构信息

AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA.

Department of Psychological Sciences, University of California Merced, Merced, CA, USA.

出版信息

Data Brief. 2020 Jan 31;29:105213. doi: 10.1016/j.dib.2020.105213. eCollection 2020 Apr.

Abstract

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) has been extensively used for diagnostic classification because it does not require task compliance and is easier to pool data from multiple imaging sites, thereby increasing the sample size. A MATLAB-based toolbox called Machine Learning in NeuroImaging (MALINI) for feature extraction and disease classification is presented. The MALINI toolbox extracts functional and effective connectivity features from preprocessed rs-fMRI data and performs classification between healthy and disease groups using any of 18 popular and widely used machine learning algorithms that are based on diverse principles. A consensus classifier combining the power of multiple classifiers is also presented. The utility of the toolbox is illustrated by accompanying data consisting of resting-state functional connectivity features from healthy controls and subjects with various brain-based disorders: autism spectrum disorder from autism brain imaging data exchange (ABIDE), Alzheimer's disease and mild cognitive impairment from Alzheimer's disease neuroimaging initiative (ADNI), attention deficit hyperactivity disorder from ADHD-200, and post-traumatic stress disorder and post-concussion syndrome acquired in-house. Results of classification performed on the above datasets can be obtained from the main article titled "Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets" [1]. The data was divided into homogeneous and heterogeneous splits, such that 80% could be used for training, model building and cross-validation, while the remaining 20% of the data could be used as a hold-out independent test data for replication of the classification performance, to ensure the robustness of the classifiers to population variance in image acquisition site and age of the sample.

摘要

静息态功能磁共振成像(rs-fMRI)已被广泛用于诊断分类,因为它不需要受试者执行特定任务,并且更容易汇总来自多个成像站点的数据,从而增加样本量。本文介绍了一个基于MATLAB的名为神经影像机器学习(MALINI)的工具箱,用于特征提取和疾病分类。MALINI工具箱从预处理的rs-fMRI数据中提取功能和有效连接特征,并使用基于不同原理的18种流行且广泛使用的机器学习算法中的任何一种,对健康组和疾病组进行分类。还提出了一种结合多个分类器能力的共识分类器。通过附带的数据说明了该工具箱的实用性,这些数据包括来自健康对照以及患有各种脑部疾病的受试者的静息态功能连接特征:来自自闭症脑成像数据交换(ABIDE)的自闭症谱系障碍、来自阿尔茨海默病神经影像倡议(ADNI)的阿尔茨海默病和轻度认知障碍、来自ADHD-200的注意力缺陷多动障碍,以及内部获取的创伤后应激障碍和脑震荡后综合征。对上述数据集进行分类的结果可从标题为“基于大规模神经影像数据集的监督机器学习用于诊断分类”的主要文章中获得[1]。数据被分为同质和异质分割,其中80%可用于训练、模型构建和交叉验证,而其余20%的数据可作为独立的测试数据用于复制分类性能,以确保分类器对图像采集站点的人群差异和样本年龄的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6858/7025186/06883f7c1c63/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验