Bui Toan Duc, Wang Li, Chen Jian, Lin Weili, Li Gang, Shen Dinggang
Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China.
Domain Adapt Represent Transf Med Image Learn Less Labels Imperfect Data (2019). 2019 Oct;11795:243-251. doi: 10.1007/978-3-030-33391-1_28. Epub 2019 Oct 13.
The deep convolutional neural network has achieved outstanding performance on neonatal brain MRI tissue segmentation. However, it may fail to produce reasonable results on unseen datasets that have different imaging appearance distributions with the training data. The main reason is that deep learning models tend to have a good fitting to the training dataset, but do not lead to a good generalization on the unseen datasets. To address this problem, we propose a multi-task learning method, which simultaneously learns both tissue segmentation and geodesic distance regression to regularize a shared encoder network. Furthermore, a dense attention gate is explored to force the network to learn rich contextual information. By using three neonatal brain datasets with different imaging protocols from different scanners, our experimental results demonstrate superior performance of our proposed method over the existing deep learning-based methods on the unseen datasets.
深度卷积神经网络在新生儿脑磁共振成像(MRI)组织分割方面取得了优异的性能。然而,对于与训练数据具有不同成像外观分布的未见数据集,它可能无法产生合理的结果。主要原因是深度学习模型往往对训练数据集有良好的拟合,但在未见数据集上却不能很好地泛化。为了解决这个问题,我们提出了一种多任务学习方法,该方法同时学习组织分割和测地距离回归,以正则化一个共享的编码器网络。此外,还探索了一种密集注意力门,以迫使网络学习丰富的上下文信息。通过使用来自不同扫描仪的具有不同成像协议的三个新生儿脑数据集,我们的实验结果表明,在未见数据集上,我们提出的方法比现有的基于深度学习的方法具有更优越的性能。