Department of Orthopedics, Peking University Third Hospital, Beijing, China.
Department of Radiology, Peking University Third Hospital, Yanqing Hospital, Beijing, China.
J Digit Imaging. 2022 Dec;35(6):1681-1689. doi: 10.1007/s10278-022-00669-w. Epub 2022 Jun 16.
The characteristics of bone fragments are the main influencing factors for the choice of treatment in intertrochanteric fractures. This study aimed to develop a deep learning algorithm for recognizing and segmenting individual fragments in CT images of complex intertrochanteric fractures for orthopedic surgeons. This study was based on 160 hip CT scans (43,510 images) of complex fractures of three types based on the Evans-Jensen classification (40 cases of type 3 (IIA) fractures, 80 cases of type 4 (IIB)fractures, and 40 cases of type 5 (III)fractures) retrospectively. The images were randomly split into two groups to construct a training set of 120 CT scans (32,045 images) and a testing set of 40 CT scans (11,465 images). A deep learning model was built into a cascaded architecture composed by a convolutional neural network (CNN) for location of the fracture ROI and another CNN for recognition and segmentation of individual fragments within the ROI. The accuracy of object detection and dice coefficient of segmentation of individual fragments were used to evaluate model performance. The model yielded an average accuracy of 89.4% for individual fragment recognition and an average dice coefficient of 90.5% for segmentation in CT images. The results demonstrated the feasibility of recognition and segmentation of individual fragments in complex intertrochanteric fractures with a deep learning approach. Altogether, these promising results suggest the potential of our model to be applied to many clinical scenarios.
骨折碎片的特征是选择治疗股骨转子间骨折的主要影响因素。本研究旨在为骨科医生开发一种深度学习算法,用于识别和分割 CT 图像中复杂股骨转子间骨折的各个碎片。本研究基于 Evans-Jensen 分类的三种类型的复杂骨折的 160 髋 CT 扫描(43510 张图像)(3A 型骨折 40 例,3B 型骨折 80 例,3C 型骨折 40 例)。回顾性地,将图像随机分为两组,构建一个包含 120 次 CT 扫描(32045 张图像)的训练集和一个包含 40 次 CT 扫描(11465 张图像)的测试集。构建了一个深度学习模型,该模型由一个卷积神经网络(CNN)组成,用于骨折 ROI 的定位,以及另一个 CNN,用于 ROI 内的各个碎片的识别和分割。使用目标检测的准确率和分割个体碎片的 Dice 系数来评估模型性能。该模型在 CT 图像中对个体碎片的识别平均准确率为 89.4%,对个体碎片的分割平均 Dice 系数为 90.5%。结果表明,深度学习方法在识别和分割复杂股骨转子间骨折中的各个碎片是可行的。总的来说,这些有希望的结果表明我们的模型有可能应用于许多临床场景。