Suppr超能文献

通过近红外激发的缺氧成像,优化纳米结构中的能量转移,实现体内癌症病变跟踪。

Optimizing Energy Transfer in Nanostructures Enables In Vivo Cancer Lesion Tracking via Near-Infrared Excited Hypoxia Imaging.

机构信息

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11, Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.

School of Nanoscience and Technology, University of Chinese Academy of Sciences, No. 19(A) Yuquan Rd, Shijingshan District, Beijing, 100049, P. R. China.

出版信息

Adv Mater. 2020 Apr;32(14):e1907718. doi: 10.1002/adma.201907718. Epub 2020 Feb 24.

Abstract

To explore highly sensitive and low-toxicity techniques for tracking and evaluation of non-small-cell lung cancer (NSCLC), one of the most mortal tumors in the world, it is utterly imperative for doctors to select the appropriate treatment strategies. Herein, developing near-infrared (NIR) excited nanosensors, in which the donor and acceptor pairs within a biological metal-organic framework (bio-MOF) matrix are precisely controlled to rationalize upconversion Förster resonance energy transfer (FRET), is suggested for detecting the O concentration inside tumors with reduced signal disturbance and health detriment. Under NIR excitation, as-fabricated core/satellite nanosensors exhibit much improved FRET efficiency and reversible hypoxic response with high sensitivity, which are effective both in vitro and in vivo (zebrafish) for cycling normoxia-hypoxia imaging. Significantly, combined with a reliable preclinical genetically engineered murine model, such nanosensors successfully realize tracking of in vivo NSCLC lesions upon clear and gradient hypoxia signals without apparent long-term biotoxicity, illustrating their exciting potential for efficient NSCLC evaluation and prognosis.

摘要

为了探索高灵敏度和低毒性的技术来跟踪和评估非小细胞肺癌(NSCLC),这是世界上最致命的肿瘤之一,医生必须选择合适的治疗策略。为此,我们建议开发近红外(NIR)激发的纳米传感器,其中生物金属有机骨架(bio-MOF)基质内的供体和受体对被精确控制,以合理化上转换Förster 共振能量转移(FRET),从而用于检测肿瘤内部的 O 浓度,减少信号干扰和健康损害。在近红外激发下,所制备的核/卫星纳米传感器表现出更高的 FRET 效率和可逆的缺氧响应,具有高灵敏度,在体外和体内(斑马鱼)都可有效地进行循环正常氧-缺氧成像。重要的是,结合可靠的临床前基因工程小鼠模型,这种纳米传感器能够在没有明显长期生物毒性的情况下,实现对体内 NSCLC 病变的跟踪,并显示出清晰和梯度缺氧信号,这表明它们在高效 NSCLC 评估和预后方面具有令人兴奋的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验