Suppr超能文献

电子药物监测器有助于确定哮喘患者的依从性亚组。

Electronic medication monitors help determine adherence subgroups in asthma.

机构信息

Department of Pediatrics, Sections of Allergy and Immunology and Pulmonary and Sleep Medicine, University of Colorado School of Medicine and the Breathing Institute, Children's Hospital Colorado, 13123, East 16th Ave, Aurora, CO, 80045, USA.

Propeller Health, 47 Maiden Lane, Floor 3, San Francisco, CA, 94108, USA.

出版信息

Respir Med. 2020 Apr;164:105914. doi: 10.1016/j.rmed.2020.105914. Epub 2020 Feb 19.

Abstract

Non-adherence to treatment regimens in asthma is well described, however less is known about temporal patterns of medication use. We monitored 20 weeks of controller medication use and analyzed these patterns in patients ≥4 years of age with self-reported asthma enrolled in a digital health program. At baseline, approximately 20%, 28%, 25% and 27% of patients had optimal, moderate, sub-optimal and poor adherence, respectively. Medication adherence decreased in all groups in this study. The largest absolute decreases in adherence (-32%) were observed for moderately adherent patients. Certain adherence patterns which demonstrated greater declines, that, once identified, could be intervened upon.

摘要

哮喘患者的治疗方案不依从现象已有充分描述,但对于用药的时间模式则知之甚少。我们监测了在数字健康计划中登记的、有自我报告哮喘的≥4 岁患者 20 周的控制药物使用情况,并对这些模式进行了分析。在基线时,分别约有 20%、28%、25%和 27%的患者具有最佳、中等、次优和差的依从性。在这项研究中,所有组别的药物依从性都有所下降。中等依从性患者的依从性下降绝对值最大(-32%)。某些依从性模式显示出更大的下降,一旦确定,就可以进行干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验