Suppr超能文献

基于混合深度学习模型的红免眼底照相黄斑神经节细胞-内丛状层厚度预测

Macular Ganglion Cell-Inner Plexiform Layer Thickness Prediction from Red-free Fundus Photography using Hybrid Deep Learning Model.

机构信息

Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.

Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea.

出版信息

Sci Rep. 2020 Feb 24;10(1):3280. doi: 10.1038/s41598-020-60277-y.

Abstract

We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer photographs (RNFLPs). A total of 789 pairs of RNFLPs and spectral domain-optical coherence tomography (SD-OCT) scans for 431 eyes of 259 participants (183 eyes of 114 healthy controls, 68 eyes of 46 glaucoma suspects, and 180 eyes of 99 glaucoma patients) were enrolled. An HDLM was built by combining a pre-trained deep learning network and support vector machine. The correlation coefficient and mean absolute error (MAE) between the predicted and measured mGCIPL thicknesses were calculated. The measured (OCT-based) and predicted (HDLM-based) average mGCIPL thicknesses were 73.96 ± 8.81 µm and 73.92 ± 7.36 µm, respectively (P = 0.844). The predicted mGCIPL thickness showed a strong correlation and good agreement with the measured mGCIPL thickness (Correlation coefficient r = 0.739; P < 0.001; MAE = 4.76 µm). Even when the peripapillary area (diameter: 1.5 disc diameters) was masked, the correlation (r = 0.713; P < 0.001) and agreement (MAE = 4.87 µm) were not changed significantly (P = 0.378 and 0.724, respectively). The trained HDLM algorithm showed a great capability for mGCIPL thickness prediction from RNFLPs.

摘要

我们开发了一种混合深度学习模型 (HDLM) 算法,可从无赤光视网膜神经纤维层照片 (RNFLP) 定量预测黄斑神经节细胞-内丛状层 (mGCIPL) 厚度。共纳入了 259 名参与者的 789 对 RNFLP 和光谱域光学相干断层扫描 (SD-OCT) 扫描,其中包括 114 名健康对照者的 183 只眼、46 名青光眼疑似患者的 68 只眼和 99 名青光眼患者的 180 只眼。通过结合预训练的深度学习网络和支持向量机构建了 HDLM。计算了预测的和测量的 mGCIPL 厚度之间的相关系数和平均绝对误差 (MAE)。测量的(基于 OCT)和预测的(基于 HDLM)平均 mGCIPL 厚度分别为 73.96±8.81μm 和 73.92±7.36μm(P=0.844)。预测的 mGCIPL 厚度与测量的 mGCIPL 厚度具有很强的相关性和良好的一致性(相关系数 r=0.739;P<0.001;MAE=4.76μm)。即使在视盘周围区域(直径:1.5 个视盘直径)被遮蔽的情况下,相关性(r=0.713;P<0.001)和一致性(MAE=4.87μm)也没有显著改变(P=0.378 和 0.724,分别)。训练有素的 HDLM 算法显示出从 RNFLP 预测 mGCIPL 厚度的强大能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2fd/7039950/3508c9c5f3c2/41598_2020_60277_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验