Suppr超能文献

理解单分散FeF纳米晶体阴极的转换机制和性能。

Understanding the conversion mechanism and performance of monodisperse FeF nanocrystal cathodes.

作者信息

Xiao Albert W, Lee Hyeon Jeong, Capone Isaac, Robertson Alex, Wi Tae-Ung, Fawdon Jack, Wheeler Samuel, Lee Hyun-Wook, Grobert Nicole, Pasta Mauro

机构信息

Department of Materials, University of Oxford Parks Road, Oxford, UK.

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.

出版信息

Nat Mater. 2020 Jun;19(6):644-654. doi: 10.1038/s41563-020-0621-z. Epub 2020 Feb 24.

Abstract

The application of transition metal fluorides as energy-dense cathode materials for lithium ion batteries has been hindered by inadequate understanding of their electrochemical capabilities and limitations. Here, we present an ideal system for mechanistic study through the colloidal synthesis of single-crystalline, monodisperse iron(II) fluoride nanorods. Near theoretical capacity (570 mA h g) and extraordinary cycling stability (>90% capacity retention after 50 cycles at C/20) is achieved solely through the use of an ionic liquid electrolyte (1 m LiFSI/PyrFSI), which forms a stable solid electrolyte interphase and prevents the fusing of particles. This stability extends over 200 cycles at much higher rates (C/2) and temperatures (50 °C). High-resolution analytical transmission electron microscopy reveals intricate morphological features, lattice orientation relationships and oxidation state changes that comprehensively describe the conversion mechanism. Phase evolution, diffusion kinetics and cell failure are critically influenced by surface-specific reactions. The reversibility of the conversion reaction is governed by topotactic cation diffusion through an invariant lattice of fluoride anions and the nucleation of metallic particles on semicoherent interfaces. This new understanding is used to showcase the inherently high discharge rate capability of FeF.

摘要

过渡金属氟化物作为锂离子电池的高能量密度阴极材料,其应用因对其电化学性能和局限性认识不足而受到阻碍。在此,我们通过胶体合成单晶、单分散的氟化亚铁纳米棒,提出了一个用于机理研究的理想体系。仅通过使用离子液体电解质(1 m LiFSI/PyrFSI)就实现了接近理论容量(570 mA h g)和非凡的循环稳定性(在C/20下50次循环后容量保持率>90%),该电解质形成了稳定的固体电解质界面并防止颗粒融合。这种稳定性在更高的倍率(C/2)和温度(50°C)下可延伸至200次循环。高分辨率分析透射电子显微镜揭示了复杂的形态特征、晶格取向关系和氧化态变化,全面描述了转化机理。相演变、扩散动力学和电池失效受到表面特异性反应的严重影响。转化反应的可逆性由通过不变的氟化物阴离子晶格的拓扑阳离子扩散以及金属颗粒在半相干界面上的成核控制。这一新认识用于展示FeF固有的高放电倍率能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验