Choi Chiwon, Yoon Hyunmin, Kang Seungyeop, Kim Dong Il, Hong John, Shin Minjeong, Yoo Dong-Joo, Kim Minkyung
Department of Electronic Materials Engineering, Kwangwoon University, 60 Gwangun-ro 1-gil, Nowon-gu, Seoul, 01897, Republic of Korea.
School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Adv Sci (Weinh). 2024 Dec;11(46):e2410114. doi: 10.1002/advs.202410114. Epub 2024 Oct 23.
Iron fluoride, a conversion-type cathode material with high energy density and low-cost iron, holds promise for Li-ion batteries but faces challenges in synthesis, conductivity, and cycling stability. This study addresses these issues by synthesizing micron-sized iron-fluoride using a simple solid-state synthesis. Despite a large particle size, a high capacity of 571 mAh g is achieved, which is attributed to the unique surface and internal pores within the iron-fluoride particles, which provided a large surface area. This is the first study to demonstrate the feasibility of using large iron fluoride particles to enhance the energy density of the electrode and achieve an iron fluoride full cell with high capacity. Also, the cause of the capacity fading is investigated. Electrode delamination from the current collector, which is the main cause of capacity fading in early cycles, is resolved using a carbon-coated aluminum (C/Al) current collector. Moreover, iron (Fe) dissolution and the deposition of dissolved Fe on the Li metal also contributed significantly to the degradation. Localized high-concentration electrolytes (LHCEs) suppress iron dissolution and Li dendrite growth, resulting in long-cycle stability for 300 cycles. This study provides insights into the further development of conversion-type metal fluorides across various compositions.
氟化铁是一种具有高能量密度和低成本铁的转换型阴极材料,在锂离子电池领域具有应用前景,但在合成、导电性和循环稳定性方面面临挑战。本研究通过简单的固态合成方法制备微米级氟化铁来解决这些问题。尽管粒径较大,但仍实现了571 mAh g的高容量,这归因于氟化铁颗粒内部独特的表面和孔隙,其提供了较大的表面积。这是首次证明使用大尺寸氟化铁颗粒提高电极能量密度并实现高容量氟化铁全电池可行性的研究。此外,还研究了容量衰减的原因。使用碳包覆铝(C/Al)集流体解决了集流体电极分层问题,这是早期循环中容量衰减的主要原因。此外,铁(Fe)的溶解以及溶解的Fe在锂金属上的沉积也对电池性能退化有显著影响。局部高浓度电解质(LHCEs)抑制了铁的溶解和锂枝晶的生长,实现了300次循环的长循环稳定性。本研究为进一步开发各种组成的转换型金属氟化物提供了思路。