Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA.
Bioinformatics. 2020 May 1;36(10):3192-3199. doi: 10.1093/bioinformatics/btaa122.
The inference of gene regulatory networks (GRNs) from DNA microarray measurements forms a core element of systems biology-based phenotyping. In the recent past, numerous computational methodologies have been formalized to enable the deduction of reliable and testable predictions in today's biology. However, little focus has been aimed at quantifying how well existing state-of-the-art GRNs correspond to measured gene-expression profiles.
Here, we present a computational framework that combines the formulation of probabilistic graphical modeling, standard statistical estimation, and integration of high-throughput biological data to explore the global behavior of biological systems and the global consistency between experimentally verified GRNs and corresponding large microarray compendium data. The model is represented as a probabilistic bipartite graph, which can handle highly complex network systems and accommodates partial measurements of diverse biological entities, e.g. messengerRNAs, proteins, metabolites and various stimulators participating in regulatory networks. This method was tested on microarray expression data from the M3D database, corresponding to sub-networks on one of the best researched model organisms, Escherichia coli. Results show a surprisingly high correlation between the observed states and the inferred system's behavior under various experimental conditions.
Processed data and software implementation using Matlab are freely available at https://github.com/kotiang54/PgmGRNs. Full dataset available from the M3D database.
从 DNA 微阵列测量推断基因调控网络(GRNs)是基于系统生物学的表型的核心要素。在最近的过去,已经制定了许多计算方法,以能够在当今生物学中得出可靠和可测试的预测。然而,很少有人关注如何衡量现有的最先进的 GRNs 与测量的基因表达谱的吻合程度。
在这里,我们提出了一个计算框架,该框架结合了概率图形模型的公式化、标准统计估计以及高通量生物数据的整合,以探索生物系统的全局行为以及实验验证的 GRNs 与相应的大型微阵列汇编数据之间的全局一致性。该模型表示为概率二分图,可处理非常复杂的网络系统,并适应各种生物实体(例如信使 RNA、蛋白质、代谢物和参与调控网络的各种刺激物)的部分测量。该方法在 M3D 数据库的微阵列表达数据上进行了测试,对应于研究最好的模型生物之一大肠杆菌的子网络。结果表明,在各种实验条件下,观察到的状态与推断系统的行为之间存在惊人的高度相关性。
在 https://github.com/kotiang54/PgmGRNs 上免费提供使用 Matlab 处理的数据和软件实现。完整数据集可从 M3D 数据库获得。