Suppr超能文献

在一个自然种群中,肠道微生物组的功能特征与宿主脂质含量相关。

Functional traits of the gut microbiome correlated with host lipid content in a natural population of .

机构信息

Department of Entomology, Cornell University, Ithaca, NY 14853, USA.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Biol Lett. 2020 Feb;16(2):20190803. doi: 10.1098/rsbl.2019.0803. Epub 2020 Feb 26.

Abstract

Most research on the nutritional significance of the gut microbiome is conducted on laboratory animals, and its relevance to wild animals is largely unknown. This study investigated the microbiome correlates of lipid content in individual wild fruit flies, . Lipid content varied 3.6-fold among the flies and was significantly correlated with the abundance of gut-derived bacterial DNA sequences that were assigned to genes contributing to 16 KEGG pathways. These included genes encoding sugar transporters and enzymes in glycolysis/gluconeogenesis, potentially promoting sugar consumption by the gut microbiome and, thereby, a lean fly phenotype. Furthermore, the lipid content of wild flies was significantly lower than laboratory flies, indicating that, as for some mammalian models, certain laboratory protocols might be obesogenic for . This study demonstrates the value of research on natural populations to identify candidate microbial genes that influence ecologically important host traits.

摘要

大多数关于肠道微生物组营养意义的研究都是在实验动物上进行的,其与野生动物的相关性在很大程度上尚不清楚。本研究调查了个体野生果蝇脂质含量的微生物组相关性。果蝇的脂质含量变化了 3.6 倍,与肠道衍生细菌 DNA 序列的丰度显著相关,这些序列被分配到参与 16 条 KEGG 途径的基因。这些基因包括编码糖转运体和糖酵解/糖异生中的酶的基因,可能促进肠道微生物组对糖的消耗,从而使果蝇表现出瘦型表型。此外,野生果蝇的脂质含量明显低于实验室果蝇,表明与某些哺乳动物模型一样,某些实验室方案可能对肥胖。本研究表明,对自然种群的研究具有重要价值,可以确定影响生态重要宿主特征的候选微生物基因。

相似文献

1
Functional traits of the gut microbiome correlated with host lipid content in a natural population of .
Biol Lett. 2020 Feb;16(2):20190803. doi: 10.1098/rsbl.2019.0803. Epub 2020 Feb 26.
4
Functional variation in the gut microbiome of wild Drosophila populations.
Mol Ecol. 2018 Jul;27(13):2834-2845. doi: 10.1111/mec.14728. Epub 2018 Jun 10.
5
Microbiome interactions shape host fitness.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11951-E11960. doi: 10.1073/pnas.1809349115. Epub 2018 Dec 3.
6
Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype.
Appl Environ Microbiol. 2015 Nov 13;82(2):671-9. doi: 10.1128/AEM.03301-15. Print 2016 Jan 15.
7
A Distinctive and Host-Restricted Gut Microbiota in Populations of a Cactophilic Drosophila Species.
Appl Environ Microbiol. 2017 Nov 16;83(23). doi: 10.1128/AEM.01551-17. Print 2017 Dec 1.
8
Gut Bacteria Mediate Nutrient Availability in Diets.
Appl Environ Microbiol. 2020 Dec 17;87(1). doi: 10.1128/AEM.01401-20.
9
Consumption of dietary sugar by gut bacteria determines Drosophila lipid content.
Biol Lett. 2015 Sep;11(9):20150469. doi: 10.1098/rsbl.2015.0469.
10
Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster.
mBio. 2013 Nov 5;4(6):e00860-13. doi: 10.1128/mBio.00860-13.

引用本文的文献

1
Structure, function, and quantitative biology of the Drosophila gut microbiome.
Curr Opin Microbiol. 2025 Sep;87:102653. doi: 10.1016/j.mib.2025.102653. Epub 2025 Aug 18.
2
Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI.
Nat Rev Gastroenterol Hepatol. 2025 Jul 31. doi: 10.1038/s41575-025-01100-9.
3
Motility genes are associated with the occurrence of -associated gut microbes.
ISME Commun. 2025 Jan 27;5(1):ycaf013. doi: 10.1093/ismeco/ycaf013. eCollection 2025 Jan.
4
Covariation Between Microbiome Composition and Host Transcriptome in the Gut of Wild : A Re-Analysis.
Ecol Evol. 2025 Jan 12;15(1):e70853. doi: 10.1002/ece3.70853. eCollection 2025 Jan.
5
Opposing Growth Responses of Lepidopteran Larvae to the Establishment of Gut Microbiota.
Microbiol Spectr. 2022 Aug 31;10(4):e0194122. doi: 10.1128/spectrum.01941-22. Epub 2022 Jun 27.
6
Bugs on Drugs: A Gut Model to Study In Vivo Antibiotic Tolerance of .
Microorganisms. 2022 Jan 7;10(1):119. doi: 10.3390/microorganisms10010119.
8
Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster.
mSystems. 2021 May 4;6(3):e01369-20. doi: 10.1128/mSystems.01369-20.

本文引用的文献

1
Host determinants of among-species variation in microbiome composition in drosophilid flies.
ISME J. 2020 Jan;14(1):217-229. doi: 10.1038/s41396-019-0532-7. Epub 2019 Oct 17.
2
Simple animal models for microbiome research.
Nat Rev Microbiol. 2019 Dec;17(12):764-775. doi: 10.1038/s41579-019-0242-1. Epub 2019 Aug 15.
3
Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Host.
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.01882-18. Print 2019 Jan 15.
4
Anatomy and Physiology of the Digestive Tract of .
Genetics. 2018 Oct;210(2):357-396. doi: 10.1534/genetics.118.300224.
5
Functional variation in the gut microbiome of wild Drosophila populations.
Mol Ecol. 2018 Jul;27(13):2834-2845. doi: 10.1111/mec.14728. Epub 2018 Jun 10.
6
Obese super athletes: fat-fueled migration in birds and bats.
J Exp Biol. 2018 Mar 7;221(Pt Suppl 1):jeb165753. doi: 10.1242/jeb.165753.
7
as a model to study obesity and metabolic disease.
J Exp Biol. 2018 Mar 7;221(Pt Suppl 1):jeb163881. doi: 10.1242/jeb.163881.
9
Lifestyles in transition: evolution and natural history of the genus Lactobacillus.
FEMS Microbiol Rev. 2017 Aug 1;41(Supp_1):S27-S48. doi: 10.1093/femsre/fux030.
10
A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria.
Mol Ecol. 2017 Sep;26(17):4536-4550. doi: 10.1111/mec.14232. Epub 2017 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验