Suppr超能文献

肠道细菌对膳食糖的消耗决定了果蝇的脂质含量。

Consumption of dietary sugar by gut bacteria determines Drosophila lipid content.

作者信息

Huang Jia-Hsin, Douglas Angela E

机构信息

Department of Entomology, Cornell University, Ithaca, NY 14853, USA.

Department of Entomology, Cornell University, Ithaca, NY 14853, USA Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA

出版信息

Biol Lett. 2015 Sep;11(9):20150469. doi: 10.1098/rsbl.2015.0469.

Abstract

Gut microorganisms are essential for the nutritional health of many animals, but the underlying mechanisms are poorly understood. This study investigated how lipid accumulation by adult Drosophila melanogaster is reduced in flies associated with the bacterium Acetobacter tropicalis which displays oral-faecal cycling between the gut and food. We demonstrate that the lower lipid content of A. tropicalis-colonized flies relative to bacteria-free flies is linked with a parallel bacterial-mediated reduction in food glucose content; and can be accounted for quantitatively by the amount of glucose acquired by the flies, as determined from the feeding rate and assimilation efficiency of bacteria-free and A. tropicalis-colonized flies. We recommend that nutritional studies on Drosophila include empirical quantification of food nutrient content, to account for likely microbial-mediated effects on diet composition. More broadly, this study demonstrates that selective consumption of dietary constituents by microorganisms can alter the nutritional balance of food and, thereby, influence the nutritional status of the animal host.

摘要

肠道微生物对许多动物的营养健康至关重要,但其潜在机制却知之甚少。本研究调查了与热带醋杆菌相关的成年黑腹果蝇中脂质积累是如何减少的,热带醋杆菌在肠道和食物之间呈现口-粪循环。我们证明,相对于无菌果蝇,定殖有热带醋杆菌的果蝇脂质含量较低与细菌介导的食物葡萄糖含量平行降低有关;并且可以通过果蝇获取的葡萄糖量进行定量解释,这是根据无菌果蝇和定殖有热带醋杆菌的果蝇的摄食率和同化效率确定的。我们建议对果蝇的营养研究应包括对食物营养成分的实证量化,以考虑微生物对饮食组成可能产生的影响。更广泛地说,本研究表明微生物对膳食成分的选择性消耗可以改变食物的营养平衡,从而影响动物宿主的营养状况。

相似文献

1
Consumption of dietary sugar by gut bacteria determines Drosophila lipid content.
Biol Lett. 2015 Sep;11(9):20150469. doi: 10.1098/rsbl.2015.0469.
2
Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype.
Appl Environ Microbiol. 2015 Nov 13;82(2):671-9. doi: 10.1128/AEM.03301-15. Print 2016 Jan 15.
3
Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster.
Appl Environ Microbiol. 2014 Jan;80(2):788-96. doi: 10.1128/AEM.02742-13. Epub 2013 Nov 15.
4
Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota.
Comp Biochem Physiol A Mol Integr Physiol. 2020 Mar;241:110626. doi: 10.1016/j.cbpa.2019.110626. Epub 2019 Nov 29.
5
Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance.
Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.00662-18. Print 2018 Sep 1.
6
The Host as the Driver of the Microbiota in the Gut and External Environment of Drosophila melanogaster.
Appl Environ Microbiol. 2015 Sep;81(18):6232-40. doi: 10.1128/AEM.01442-15. Epub 2015 Jul 6.
7
Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Host.
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.01882-18. Print 2019 Jan 15.
9
Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.
Antioxid Redox Signal. 2017 Dec 1;27(16):1361-1380. doi: 10.1089/ars.2016.6790. Epub 2017 May 24.
10
in the gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0016523. doi: 10.1128/aem.00165-23. Epub 2023 Oct 6.

引用本文的文献

2
3
Recent trends in insect gut immunity.
Front Immunol. 2023 Dec 18;14:1272143. doi: 10.3389/fimmu.2023.1272143. eCollection 2023.
4
Role of gut commensal bacteria in juvenile developmental growth of the host: insights from studies.
Anim Cells Syst (Seoul). 2023 Nov 15;27(1):329-339. doi: 10.1080/19768354.2023.2282726. eCollection 2023.
5
The role of microbiota in gut homeostasis and immunity.
Gut Microbes. 2023 Jan-Dec;15(1):2208503. doi: 10.1080/19490976.2023.2208503.
6
bacteraemia in an immunocompromised patient: case report.
Access Microbiol. 2022 Nov 24;4(11):acmi000374. doi: 10.1099/acmi.0.000374. eCollection 2022.
7
Drosophila melanogaster microbiome is shaped by strict filtering and neutrality along a latitudinal cline.
Mol Ecol. 2022 Nov;31(22):5861-5871. doi: 10.1111/mec.16692. Epub 2022 Sep 23.
8
Bacterial Metabolism and Transport Genes Are Associated with the Preference of Drosophila melanogaster for Dietary Yeast.
Appl Environ Microbiol. 2022 Aug 23;88(16):e0072022. doi: 10.1128/aem.00720-22. Epub 2022 Aug 1.
9
Nutrient Sensing via Gut in .
Int J Mol Sci. 2022 Feb 28;23(5):2694. doi: 10.3390/ijms23052694.
10
How Gut Microbes Nurture Intestinal Stem Cells: A Perspective.
Metabolites. 2022 Feb 10;12(2):169. doi: 10.3390/metabo12020169.

本文引用的文献

1
Putting the balance back in diet.
Cell. 2015 Mar 26;161(1):18-23. doi: 10.1016/j.cell.2015.02.033.
5
Gut microbiota dictates the metabolic response of Drosophila to diet.
J Exp Biol. 2014 Jun 1;217(Pt 11):1894-901. doi: 10.1242/jeb.101725. Epub 2014 Feb 27.
6
Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster.
Appl Environ Microbiol. 2014 Jan;80(2):788-96. doi: 10.1128/AEM.02742-13. Epub 2013 Nov 15.
7
Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster.
mBio. 2013 Nov 5;4(6):e00860-13. doi: 10.1128/mBio.00860-13.
8
Comparative digestive physiology.
Compr Physiol. 2013 Apr;3(2):741-83. doi: 10.1002/cphy.c110054.
9
The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates.
ISME J. 2012 Jul;6(7):1415-26. doi: 10.1038/ismej.2011.212. Epub 2012 Jan 19.
10
Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling.
Science. 2011 Nov 4;334(6056):670-4. doi: 10.1126/science.1212782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验