Suppr超能文献

凸组合序列核关联检验在罕见变异研究中的应用。

Convex combination sequence kernel association test for rare-variant studies.

机构信息

Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.

National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts.

出版信息

Genet Epidemiol. 2020 Jun;44(4):352-367. doi: 10.1002/gepi.22287. Epub 2020 Feb 26.

Abstract

We propose a novel variant set test for rare-variant association studies, which leverages multiple single-nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at and has greater power than SKAT(-O) when SNV weights are not misspecified and sample sizes are large ( ). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome-wide significant associations between fasting glucose and 4-kb windows of rare variants ( ) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( ) and within CPLX1 ( ). These two genes were previously reported to be involved in obesity-mediated insulin resistance and glucose-induced insulin secretion by pancreatic beta-cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.

摘要

我们提出了一种新的罕见变异关联研究的变异集检验方法,该方法利用了多种单核苷酸变异(SNV)注释。我们的方法通过多核学习算法优化了不同序列核关联检验(SKAT)统计量的凸组合,其中每个统计量都来自不同的注释,组合权重通过该算法进行优化。通过数据分割对组合检验统计量进行经验评估。在模拟中,我们发现当 SNV 权重未被误定时,我们的方法在 时保持了第一类错误率,并且在样本量较大时( )比 SKAT(-O) 具有更高的功效。我们在弗雷明汉心脏研究(FHS)中利用该方法来识别与空腹血糖相关的 SNV 集。虽然我们无法在 6419 名 FHS 参与者中检测到空腹血糖与 4kb 稀有变异( )之间的全基因组显著关联( ),但我们的方法在 ROCK2 附近( )和 CPLX1 内( )的稀有变异与空腹血糖之间识别到了有意义的关联。这两个基因先前分别被报道与肥胖介导的胰岛素抵抗和胰腺β细胞中葡萄糖诱导的胰岛素分泌有关。这些发现需要在其他队列中进行复制,并通过功能基因组研究进行验证。

相似文献

10
A gene based combination test using GWAS summary data.基于 GWAS 汇总数据的基因组合测试。
BMC Bioinformatics. 2023 Jan 3;24(1):2. doi: 10.1186/s12859-022-05114-x.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验