Isaeva Anna, Ruck Michael
Faculty of Physics, Technische Universität Dresden, 01062 Dresden, Germany.
Leibniz IFW Dresden, Institute for Solid-State and Materials Research, Helmholtzstrasse 20, 01069 Dresden, Germany.
Inorg Chem. 2020 Mar 16;59(6):3437-3451. doi: 10.1021/acs.inorgchem.9b03461. Epub 2020 Feb 26.
Bismuth is gaining importance as a key element of functional quantum materials. The effects of spin-orbit coupling (SOC) are at the heart of many exciting proposals for next-generation quantum technologies, including topological materials for efficient information transmission and energy-saving applications. The "heavy" element bismuth and its compounds are predestined for SOC-induced topological properties, but materials design is challenged by a complex link between them and the chemical composition and crystal structure. Nevertheless, a lot can be learned about a certain property by testing its limits with compositional and/or structure modifications. We survey a handful of topological bismuth-based materials that bear structural and chemical semblance to the early topological insulators, antimony-doped elemental bismuth, BiSe and BiTe. Chemical bonding via p orbitals and modular structure underlie all considered bismuth chalcogenides, subhalides, and chalcogenide halides and allow us to correlate the evolution of chemical bonding and structure with variability of the topological properties, although materials design should not be regarded as a building blocks set. Over the past decade, material discoveries have unearthed a plethora of topological properties, and bismuth is very fertile as a progenitor of a rich palette of exotic quantum materials, ranging from strong and weak 3D and crystalline topological insulators over topological metals and semimetals to magnetic topological insulators, while preserving the general layered structure motif.
铋作为功能量子材料的关键元素正变得越来越重要。自旋轨道耦合(SOC)效应是许多关于下一代量子技术的令人兴奋的提议的核心,包括用于高效信息传输和节能应用的拓扑材料。“重”元素铋及其化合物注定具有由SOC诱导的拓扑性质,但材料设计受到它们与化学成分和晶体结构之间复杂联系的挑战。然而,通过用成分和/或结构修饰来测试其极限,可以了解到很多关于某种性质的信息。我们考察了一些拓扑铋基材料,它们在结构和化学上与早期的拓扑绝缘体、锑掺杂的元素铋、BiSe和BiTe有相似之处。所有考虑的铋硫族化合物、亚卤化物和硫族卤化物都基于通过p轨道的化学键合和模块化结构,这使我们能够将化学键合和结构的演变与拓扑性质的变化相关联,尽管材料设计不应被视为一组积木。在过去十年中,材料发现揭示了大量的拓扑性质,并且铋作为丰富多样的奇异量子材料的起源非常富有成效,从强和弱的三维及晶体拓扑绝缘体到拓扑金属和半金属,再到磁性拓扑绝缘体,同时保留了一般的层状结构 motif。