文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于晚期癌症治疗的基于纳米技术的生物聚合物口服给药平台

Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment.

作者信息

Chivere Vanessa T, Kondiah Pierre P D, Choonara Yahya E, Pillay Viness

机构信息

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.

出版信息

Cancers (Basel). 2020 Feb 24;12(2):522. doi: 10.3390/cancers12020522.


DOI:10.3390/cancers12020522
PMID:32102429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7073194/
Abstract

Routes of drug administration and their corresponding physiochemical characteristics play major roles in drug therapeutic efficiency and biological effects. Each route of delivery has favourable aspects and limitations. The oral route of delivery is the most convenient, widely accepted and safe route. However, the oral route of chemotherapeutics to date have displayed high gastric degradation, low aqueous solubility, poor formulation stability and minimum intestinal absorption. Thus, mainstream anti-cancer drugs in current formulations are not suitable as oral chemotherapeutic formulations. The use of biopolymers such as chitosan, gelatin, hyaluronic acid and polyglutamic acid, for the synthesis of oral delivery platforms, have potential to help overcome problems associated with oral delivery of chemotherapeutics. Biopolymers have favourable stimuli-responsive properties, and thus can be used to improve oral bioavailability of anti-cancer drugs. These biopolymeric formulations can protect gastric-sensitive drugs from pH degradation, target specific binding sites for targeted absorption and consequently control drug release. In this review, the use of various biopolymers as oral drug delivery systems for chemotherapeutics will be discussed.

摘要

药物给药途径及其相应的物理化学特性在药物治疗效果和生物学效应中起着主要作用。每种给药途径都有其优点和局限性。口服给药途径是最方便、被广泛接受且安全的途径。然而,迄今为止,化疗药物的口服途径表现出高胃降解性、低水溶性、差的制剂稳定性和最小的肠道吸收。因此,当前制剂中的主流抗癌药物不适合作为口服化疗制剂。使用壳聚糖、明胶、透明质酸和聚谷氨酸等生物聚合物来合成口服给药平台,有可能帮助克服与化疗药物口服给药相关的问题。生物聚合物具有良好的刺激响应特性,因此可用于提高抗癌药物的口服生物利用度。这些生物聚合物制剂可以保护对胃敏感的药物免受pH降解,靶向特定结合位点以实现靶向吸收并因此控制药物释放。在本综述中,将讨论各种生物聚合物作为化疗药物口服给药系统的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/e0f130003022/cancers-12-00522-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/d7ff52c0830f/cancers-12-00522-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/1cf5bc648ffe/cancers-12-00522-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/fa9703e303e3/cancers-12-00522-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/693513baa30a/cancers-12-00522-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/7e957591ef69/cancers-12-00522-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/e0f130003022/cancers-12-00522-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/d7ff52c0830f/cancers-12-00522-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/1cf5bc648ffe/cancers-12-00522-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/fa9703e303e3/cancers-12-00522-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/693513baa30a/cancers-12-00522-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/7e957591ef69/cancers-12-00522-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6258/7073194/e0f130003022/cancers-12-00522-g006.jpg

相似文献

[1]
Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment.

Cancers (Basel). 2020-2-24

[2]
Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer.

Pharmaceutics. 2023-1-1

[3]
Nanotechnology Based Approaches for Enhancing Oral Bioavailability of Poorly Water Soluble Antihypertensive Drugs.

Scientifica (Cairo). 2016

[4]
Impact of nanotechnology on the oral delivery of phyto-bioactive compounds.

Food Chem. 2023-10-30

[5]
Celecoxib Oral Solution and the Benefits of Self-Microemulsifying Drug Delivery Systems (SMEDDS) Technology: A Narrative Review.

Pain Ther. 2023-10

[6]
Lipid-Based Nanocarriers for Lymphatic Transportation.

AAPS PharmSciTech. 2019-1-23

[7]
Lipid-Based Nanosystem As Intelligent Carriers for Versatile Drug Delivery Applications.

Curr Pharm Des. 2020

[8]
Polymer-based nanoparticles for oral insulin delivery: Revisited approaches.

Biotechnol Adv. 2015-2-26

[9]
Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices.

Environ Res. 2022-12

[10]
A Systematic Review of Functionalized Polymeric Nanoparticles to Improve Intestinal Permeability of Drugs and Biological Products.

Curr Pharm Des. 2022

引用本文的文献

[1]
Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review.

J Maxillofac Oral Surg. 2024-8

[2]
Wondrous Yellow Molecule: Are Hydrogels a Successful Strategy to Overcome the Limitations of Curcumin?

Molecules. 2024-4-12

[3]
Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects.

Biomedicines. 2024-2-11

[4]
Development and validation of simultaneous quantification method for gemcitabine and betulinic acid: augmenting industrial application.

3 Biotech. 2023-8

[5]
Hyaluronic Acid-Coated Chitosan/Gelatin Nanoparticles as a New Strategy for Topical Delivery of Metformin in Melanoma.

Biomed Res Int. 2023

[6]
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers.

Polymers (Basel). 2023-2-8

[7]
Turning Microbial AhR Agonists into Therapeutic Agents via Drug Delivery Systems.

Pharmaceutics. 2023-2-3

[8]
Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970-2022.

Cancers (Basel). 2023-1-26

[9]
Alginate-Based Micro- and Nanosystems for Targeted Cancer Therapy.

Mar Drugs. 2022-9-23

[10]
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy.

Pharmaceutics. 2022-8-25

本文引用的文献

[1]
Dendrimers for drug delivery.

J Mater Chem B. 2014-7-14

[2]
A Composite of Hyaluronic Acid-Modified Graphene Oxide and Iron Oxide Nanoparticles for Targeted Drug Delivery and Magnetothermal Therapy.

ACS Omega. 2019-5-28

[3]
Cross-Linking Strategies for Electrospun Gelatin Scaffolds.

Materials (Basel). 2019-8-4

[4]
Cytotoxicity of Dendrimers.

Biomolecules. 2019-8-1

[5]
Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems.

Cancers (Basel). 2019-5-8

[6]
Design of Poly(lactic--glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis.

Pharmaceutics. 2019-4-16

[7]
Gemcitabine and betulinic acid co-encapsulated PLGA-PEG polymer nanoparticles for improved efficacy of cancer chemotherapy.

Mater Sci Eng C Mater Biol Appl. 2019-1-8

[8]
Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery.

Artif Cells Nanomed Biotechnol. 2019-12

[9]
A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: A strategy for enhancing the therapeutic efficacy of chemotherapy.

Mater Sci Eng C Mater Biol Appl. 2018-12-27

[10]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索