Suppr超能文献

非幺正算符的变分量子过程层析成像

Variational Quantum Process Tomography of Non-Unitaries.

作者信息

Xue Shichuan, Wang Yizhi, Liu Yong, Shi Weixu, Wu Junjie

机构信息

Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China.

出版信息

Entropy (Basel). 2023 Jan 1;25(1):90. doi: 10.3390/e25010090.

Abstract

Quantum process tomography is a fundamental and critical benchmarking and certification tool that is capable of fully characterizing an unknown quantum process. Standard quantum process tomography suffers from an exponentially scaling number of measurements and complicated data post-processing due to the curse of dimensionality. On the other hand, non-unitary operators are more realistic cases. In this work, we put forward a variational quantum process tomography method based on the supervised quantum machine learning framework. It approximates the unknown non-unitary quantum process utilizing a relatively shallow depth parametric quantum circuit and fewer input states. Numerically, we verified our method by reconstructing the non-unitary quantum mappings up to eight qubits in two cases: the weighted sum of the randomly generated quantum circuits and the imaginary time evolution of the Heisenberg XXZ spin chain Hamiltonian. Results show that those quantum processes could be reconstructed with high fidelities (>99%) and shallow depth parametric quantum circuits (d≤8), while the number of input states required is at least two orders of magnitude less than the demands of the standard quantum process tomography. Our work shows the potential of the variational quantum process tomography method in characterizing non-unitary operators.

摘要

量子过程层析成像(Quantum process tomography)是一种基础且关键的基准测试和认证工具,能够全面刻画未知的量子过程。由于维度灾难,标准量子过程层析成像存在测量数量呈指数增长以及数据后处理复杂的问题。另一方面,非酉算子是更实际的情况。在这项工作中,我们基于有监督量子机器学习框架提出了一种变分量子过程层析成像方法。它利用相对较浅深度的参数化量子电路和较少的输入态来近似未知的非酉量子过程。在数值上,我们通过在两种情况下重构多达八个量子比特的非酉量子映射来验证我们的方法:随机生成的量子电路的加权和以及海森堡XXZ自旋链哈密顿量的虚时演化。结果表明,这些量子过程能够以高保真度(>99%)和浅深度参数化量子电路(d≤8)进行重构,而所需的输入态数量比标准量子过程层析成像的要求至少少两个数量级。我们的工作展示了变分量子过程层析成像方法在刻画非酉算子方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a0/9858050/b3224b25132c/entropy-25-00090-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验