Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720.
Energy Biosciences Institute, University of California, Berkeley, CA 94704.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6003-6013. doi: 10.1073/pnas.1915611117. Epub 2020 Feb 28.
Filamentous fungi, such as , are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.
丝状真菌,如 ,通过分泌大量的植物细胞壁降解酶、重塑代谢以适应分泌酶的产生以及使植物生物质成分的运输和细胞内利用成为可能,非常有效地解构植物生物质。虽然已经鉴定出了许多参与植物生物质利用的酶和转录调节剂,但丝状真菌如何感知和整合植物细胞壁中编码的营养信息,并将其整合到一个调节层次结构中,以实现复杂碳源的最佳利用,目前尚不清楚。在这里,我们对 40 种不同的碳源(包括植物生物质)进行了转录谱分析,以提供关于真菌如何感知简单到复杂碳水化合物的信息。从这些数据中,我们鉴定出了 中的调节因子,并对一个与果胶利用相关的(PDR-2)和一个与果胶/半纤维素利用相关的(ARA-1)进行了特征描述。通过体外 DNA 亲和纯化测序(DAP-seq),我们鉴定了参与调节编码植物细胞壁降解酶的基因的转录因子的直接靶标。特别是,我们的数据阐明了转录因子 VIB-1 在调节编码植物细胞壁降解酶和养分摄取的基因表达中的作用,并揭示了碳分解代谢物阻遏物 CRE-1 在调节主要易化剂转运基因表达中的主要作用。这些数据有助于更全面地了解参与调节营养感知和植物生物质利用的转录因子及其靶基因之间的串扰,这在全局水平上涉及到。