Zhao Y, Descamps J, Léger Y, Sojic N, Loget G
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes 35000, France.
University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France.
Acc Chem Res. 2024 Aug 6;57(15):2144-2153. doi: 10.1021/acs.accounts.4c00273. Epub 2024 Jul 16.
ConspectusElectrochemiluminescence (ECL) is the electrochemical generation of light. It involves an interfacial charge transfer that produces the excited state of a luminophore at the electrode surface. ECL is a powerful readout method that is widely employed for immunoassays and clinical diagnostics and is progressively evolving into a microscopy technique. On the other hand, photoelectrochemistry at illuminated semiconductors is a field of research that deals with the transfer of photogenerated charge carriers at the solid-liquid interface. This concept offers several advantages such as a considerable lowering of the onset potential required for triggering an electrochemical reaction as well as light addressable chemistry, via the spatial confinement of redox reactions at locally illuminated semiconductor electrodes. The combination of ECL with photoelectrochemistry at illuminated semiconductors is termed photoinduced ECL (PECL). It deals with the triggering of an ECL reaction through the transfer of photogenerated minority charge carriers at the illuminated solid/liquid interface. PECL results in the conversion of incident photons (λ), that are absorbed by the semiconductor photoelectrode to emitted photons (λ), produced by the ECL reaction. Although demonstrated in the 1970s by Bard et al. in ultradry organic solvents, PECL remained unexplored until the last five years. Nowadays, as a result of the considerable progress achieved in semiconductor photoelectrodes and ECL systems, a large variety of PECL systems can be designed by combining photoelectrode materials with ECL luminophores, making it a versatile tool for light conversion in aqueous media.In this Account, we introduce the fundamentals of ECL and photoelectrochemistry at illuminated semiconductors and review the recent developments in PECL. We discuss the two main PECL light conversion schemes: downconversion (where λ < λ) and upconversion (where λ > λ). Besides, PECL can be used to simplify considerably the common electrochemical setups employed for ECL. Indeed, by engineering the photoelectrode material and carefully considering the reactivity involved for ECL and its counter-reaction, PECL enables the ultimate concept of all-optical ECL (AO-ECL), i.e., ECL generation at an illuminated monolithic device immersed into the electrolyte solution. As discussed in this Account, AO-ECL is an important breakthrough that allows the simplest ECL experimental configuration ever reported, eliminating constraints such as an electrical power supply, wires, electrodes, connections, and specific electrochemical knowledge. As shown at the end of this Account, due to the robustness of recently manufactured PECL systems, several applications can already be envisioned for microscopy, elucidation of solar conversion mechanisms, near-infrared imaging, and bioanalysis.
概述
电化学发光(ECL)是光的电化学生成过程。它涉及界面电荷转移,该转移在电极表面产生发光体的激发态。ECL是一种强大的读出方法,广泛用于免疫分析和临床诊断,并逐渐发展成为一种显微技术。另一方面,光照半导体上的光电化学是一个研究领域,涉及光生电荷载流子在固液界面的转移。这一概念具有诸多优势,比如能显著降低触发电化学反应所需的起始电位,以及通过在局部光照的半导体电极上对氧化还原反应进行空间限制实现光寻址化学。将ECL与光照半导体上的光电化学相结合被称为光诱导ECL(PECL)。它涉及通过光生少数电荷载流子在光照的固/液界面的转移来触发ECL反应。PECL导致入射光子(λ)被半导体光电极吸收后转化为由ECL反应产生的发射光子(λ)。尽管20世纪70年代Bard等人在超干燥有机溶剂中证明了PECL,但直到过去五年它才得到探索。如今,由于半导体光电极和ECL系统取得了显著进展,通过将光电极材料与ECL发光体相结合,可以设计出各种各样的PECL系统,使其成为水性介质中光转换的通用工具。
在本综述中,我们介绍了ECL和光照半导体上的光电化学的基本原理,并回顾了PECL的最新进展。我们讨论了两种主要的PECL光转换方案:下转换(λ < λ)和上转换(λ > λ)。此外,PECL可用于大幅简化用于ECL的常见电化学装置。实际上,通过设计光电极材料并仔细考虑ECL及其逆反应所涉及的反应活性,PECL实现了全光ECL(AO - ECL)的最终概念,即在浸入电解液的光照单片器件上产生ECL。如本综述中所讨论的,AO - ECL是一项重要突破,它允许采用有史以来报道的最简单的ECL实验配置,消除了诸如电源、电线、电极、连接以及特定电化学知识等限制。如本综述末尾所示,由于最近制造的PECL系统的稳健性,已经可以设想其在显微镜检查、太阳能转换机制阐明、近红外成像和生物分析等方面的多种应用。