Suppr超能文献

通过RiboMethSeq对RNA中2'-O-甲基化进行检测和定量的生物信息学分析流程的整体优化

Holistic Optimization of Bioinformatic Analysis Pipeline for Detection and Quantification of 2'-O-Methylations in RNA by RiboMethSeq.

作者信息

Pichot Florian, Marchand Virginie, Ayadi Lilia, Bourguignon-Igel Valérie, Helm Mark, Motorin Yuri

机构信息

IMoPA UMR7365 CNRS-UL, BioPole Université de Lorraine, Vandœuvre-lès-Nancy, France.

Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UMS2008 IBSLor (CNRS-UL)/US40 (INSERM), Université de Lorraine, Vandœuvre-lès-Nancy, France.

出版信息

Front Genet. 2020 Feb 13;11:38. doi: 10.3389/fgene.2020.00038. eCollection 2020.

Abstract

A major trend in the epitranscriptomics field over the last 5 years has been the high-throughput analysis of RNA modifications by a combination of specific chemical treatment(s), followed by library preparation and deep sequencing. Multiple protocols have been described for several important RNA modifications, such as 5-methylcytosine (mC), pseudouridine (ψ), 1-methyladenosine (mA), and 2'-O-methylation (Nm). One commonly used method is the alkaline cleavage-based RiboMethSeq protocol, where positions of reads' 5'-ends are used to distinguish nucleotides protected by ribose methylation. This method was successfully applied to detect and quantify Nm residues in various RNA species such as rRNA, tRNA, and snRNA. Such applications require adaptation of the initially published protocol(s), both at the wet bench and in the bioinformatics analysis. In this manuscript, we describe the optimization of RiboMethSeq bioinformatics at the level of initial read treatment, alignment to the reference sequence, counting the 5'- and 3'- ends, and calculation of the RiboMethSeq scores, allowing precise detection and quantification of the Nm-related signal. These improvements introduced in the original pipeline permit a more accurate detection of Nm candidates and a more precise quantification of Nm level variations. Applications of the improved RiboMethSeq treatment pipeline for different cellular RNA types are discussed.

摘要

在过去5年中,表观转录组学领域的一个主要趋势是通过特定化学处理、文库制备和深度测序相结合的方法对RNA修饰进行高通量分析。针对几种重要的RNA修饰,如5-甲基胞嘧啶(mC)、假尿苷(ψ)、1-甲基腺苷(mA)和2'-O-甲基化(Nm),已经描述了多种实验方案。一种常用的方法是基于碱性切割的RiboMethSeq方案,该方案利用 reads 的5'端位置来区分受核糖甲基化保护的核苷酸。这种方法已成功应用于检测和定量各种RNA种类(如rRNA、tRNA和snRNA)中的Nm残基。此类应用需要在实验台操作和生物信息学分析两方面对最初发表的方案进行调整。在本手稿中,我们描述了RiboMethSeq生物信息学在初始读段处理、与参考序列比对、计算5'端和3'端以及计算RiboMethSeq分数等层面的优化,从而能够精确检测和定量与Nm相关的信号。原始流程中引入的这些改进使得能够更准确地检测Nm候选物,并更精确地定量Nm水平变化。我们还讨论了改进后的RiboMethSeq处理流程在不同细胞RNA类型中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验