Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204, USA.
Nanoscale Horiz. 2020 Mar 1;5(3):400-430. doi: 10.1039/c9nh00628a. Epub 2019 Nov 29.
Photothermal therapy (PTT) is one of the most promising techniques for cancer tumor ablation. Nanoparticles are increasingly being investigated for use with PTT and can serve as theranostic agents. Based on the ability of near-infrared nano-photo-absorbers to generate heat under laser irradiation, PTT could prove advantageous in certain situations over more classical cancer therapies. To analyze the efficacy of nanoparticle-based PTT, preclinical in vitro studies typically use 2D cultures, but this method cannot completely mimic the complex tumor organization, bioactivity, and physiology that all control the complex penetration depth, biodistribution, and tissue diffusion parameters of nanomaterials in vivo. To fill this knowledge gap, 3D culture systems have been explored for PTT analysis. These models provide more realistic microenvironments that allow spatiotemporal oxygen gradients and cancer cell adaptations to be considered. This review highlights the work that has been done to advance 3D models for cancer microenvironment modeling, specifically in the context of advanced, functionalized nanoparticle-directed PTT.
光热疗法(PTT)是癌症肿瘤消融最有前途的技术之一。纳米粒子越来越多地被用于 PTT 研究,并可用作治疗诊断试剂。基于近红外纳米光吸收剂在激光照射下产生热量的能力,在某些情况下,PTT 可能比更经典的癌症治疗方法更具优势。为了分析基于纳米粒子的 PTT 的疗效,临床前体外研究通常使用 2D 培养物,但这种方法不能完全模拟复杂的肿瘤组织、生物活性和生理学,所有这些都控制着纳米材料在体内的复杂穿透深度、生物分布和组织扩散参数。为了填补这一知识空白,人们已经探索了用于 PTT 分析的 3D 培养系统。这些模型提供了更真实的微环境,允许考虑时空氧梯度和癌细胞的适应性。本文综述了为推进癌症微环境建模的 3D 模型所做的工作,特别是在先进的、功能化的纳米粒子导向 PTT 方面。