MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Metab Eng. 2020 May;59:119-130. doi: 10.1016/j.ymben.2020.02.005. Epub 2020 Feb 29.
Polyhydroxyalkanoates (PHA) have found widespread medical applications due to their biocompatibility and biodegradability, while further chemical modification requires functional groups on PHA. Halomonas bluephagenesis, a non-model halophilic bacterium serving as a chassis for the Next Generation Industrial Biotechnology (NGIB), was successfully engineered to express heterologous PHA synthase (PhaC) and enoyl coenzyme-A hydratase (PhaJ) from Aeromonas hydrophila 4AK4, along with a deletion of its native phaC gene to synthesize the short chain-co-medium chain-length PHA copolymers, namely poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhex-5-enoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyhex-5-enoate). After optimizations of the expression cassette and ribosomal binding site combined with introduction of endogenous acyl-CoA synthetase (fadD), the resulting recombinant strain H. bluephagenesis TDR4 achieved a remarkably high 3-hydroxyhexenoate (3HHxE) molar ratio of 35% when grown on glucose and 5-hexenoic acid as co-substrates. The total ratio of side chain consisting of 3HHx and 3HHxE monomers in the terpolymer can approach 44 mol%. H. bluephagenesis TDR4 was grown to a cell dry mass (CDM) of 30 g/L containing approximately 20% poly(3-hydroxybutyrate-co-22.75 mol% 3-hydroxy-5-hexenoate) in a 48-h of open and unsterile fermentation with a 5-hexenoic acid conversion efficiency of 91%. The resulted functional PHA containing 12.5 mol% 3-hydroxy-5-hexenoate exhibits more than 1000% elongation at break. The engineered H. bluephagenesis TDR4 can be used as an experimental platform to produce functional PHA.
聚羟基烷酸酯(PHA)由于其生物相容性和可生物降解性而在医学领域得到了广泛的应用,而进一步的化学修饰则需要 PHA 上的功能基团。蓝盐单胞菌是一种非模式嗜盐菌,作为下一代工业生物技术(NGIB)的底盘,成功地被工程改造表达了来自嗜水气单胞菌 4AK4 的异源 PHB 合酶(PhaC)和烯酰辅酶 A 水合酶(PhaJ),同时敲除了其天然的 phaC 基因,以合成短链-中链长 PHA 共聚物,即聚(3-羟基丁酸-co-3-羟基己酸)、聚(3-羟基丁酸-co-3-羟基己-5-烯酸)和聚(3-羟基丁酸-co-3-羟基己酸-co-3-羟基己-5-烯酸)。在优化表达盒和核糖体结合位点的基础上,结合引入内源性酰基辅酶 A 合成酶(fadD),得到的重组菌 H. bluephagenesis TDR4 在以葡萄糖和 5-己烯酸为共底物生长时,3-羟基己酸(3HHx)的摩尔比达到了惊人的 35%。共聚物中由 3HHx 和 3HHx 单体组成的侧链的总比例可以接近 44mol%。在未灭菌的开放发酵 48 小时内,H. bluephagenesis TDR4 的细胞干重(CDM)达到 30g/L,其中含有约 20%的聚(3-羟基丁酸-co-22.75mol% 3-羟基-5-己烯酸),5-己烯酸的转化率为 91%。所得的功能 PHA 含有 12.5mol%的 3-羟基-5-己烯酸,断裂伸长率超过 1000%。经过工程改造的 H. bluephagenesis TDR4 可以作为一个实验平台来生产功能性 PHA。