Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France.
mBio. 2020 Mar 3;11(2):e02443-19. doi: 10.1128/mBio.02443-19.
Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation. Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.
水平基因转移(HGT)促进了细菌群落中基因的传播。在 HGT 机制中,自然转化作为细菌核心基因组的编码而引人注目。自然转化通常被视为获取新基因和在细菌种群中产生遗传混合的一种方式。另一个最近提出的功能是消除细菌基因组中感染性寄生移动遗传元件(MGE)。在这里,我们提出这些看似对立的理论观点可以统一起来。尽管对细菌细胞来说代价高昂,但 MGE 可以携带在压力条件下对细菌有益的功能(例如,抗生素抗性基因)。通过计算建模,我们表明,在随机环境中,中间转化率通过允许携带抗性基因的 MGE 可逆整合,最大限度地提高了细菌的适应性,尽管这些 MGE 对宿主细胞复制来说代价高昂。基于这种双重功能(MGE 的获取和去除),转化将成为长期稳定细菌基因组的关键机制,这也解释了其惊人的保守性。自然转化是细菌对胞外 DNA 的受控获取,是水平基因转移最常见的机制之一,促进了抗性基因的传播。然而,其进化功能仍然难以捉摸,并且已经提出了两个主要作用:(i)细菌种群中新基因的获取和遗传混合,以及(ii)去除感染性寄生移动遗传元件(MGE)。虽然前者促进了基因多样化,但后者促进了外来 DNA 的去除和因此基因组的稳定性,这使得这两个功能显然是对立的。使用计算模型,我们表明,常见于细菌中的中间转化率允许 MGE 的获取然后去除。在具有随机应激暴露的环境中,短暂获取具有抗性基因的昂贵 MGE 最大限度地提高了细菌的适应性。因此,转化将确保细菌基因组在短期内具有强大的动态性,并长期保持稳定。