Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.
Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia.
Mol Biol Rep. 2020 Apr;47(4):3141-3153. doi: 10.1007/s11033-020-05363-0. Epub 2020 Mar 4.
Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.
栽培葡萄(Vitis vinifera subsp. sativa)被认为是由中亚地区的野生葡萄(Vitis vinifera subsp. sylvestris)驯化而来。V. vinifera subsp. sativa 是全球最重要的经济水果作物之一。由于栽培葡萄易受多种生物和非生物土壤因素的影响,它们还需要嫁接到抗性砧木上,这些砧木主要是通过美洲野生葡萄物种(V. berlandieri、V. riparia 和 V. rupestris)之间的杂交培育而来。因此,野生葡萄物种是葡萄栽培应对生物和非生物胁迫的重要遗传材料,无论是在品种还是砧木部分。实际上,葡萄栽培面临着多种环境限制,气候变化进一步加剧了这些限制。最近,一些关于野生葡萄生物和非生物胁迫反应的报告揭示了对不同限制具有耐受性的品种。一些先进技术的出现,如组学技术、标记辅助选择(MAS)和功能分析工具,使我们能够更详细地描述这些野生葡萄的抗性机制,并提示一些物种(V. rotundifolia、V. rupestris、V. riparia、V. berlandieri 和 V. amurensis)具有尚未开发的潜力,可用于新的抗性特征,包括抗病基因座和关键耐受基因。本综述报告了不同生物技术工具在探索和研究野生葡萄耐受机制方面的重要性,这些机制可用于在气候变化条件下促进优良栽培葡萄的发展。