Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.
Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.
Nat Commun. 2020 Mar 4;11(1):1177. doi: 10.1038/s41467-020-14975-w.
Improved identification of bacterial and viral infections would reduce morbidity from sepsis, reduce antibiotic overuse, and lower healthcare costs. Here, we develop a generalizable host-gene-expression-based classifier for acute bacterial and viral infections. We use training data (N = 1069) from 18 retrospective transcriptomic studies. Using only 29 preselected host mRNAs, we train a neural-network classifier with a bacterial-vs-other area under the receiver-operating characteristic curve (AUROC) 0.92 (95% CI 0.90-0.93) and a viral-vs-other AUROC 0.92 (95% CI 0.90-0.93). We then apply this classifier, inflammatix-bacterial-viral-noninfected-version 1 (IMX-BVN-1), without retraining, to an independent cohort (N = 163). In this cohort, IMX-BVN-1 AUROCs are: bacterial-vs.-other 0.86 (95% CI 0.77-0.93), and viral-vs.-other 0.85 (95% CI 0.76-0.93). In patients enrolled within 36 h of hospital admission (N = 70), IMX-BVN-1 AUROCs are: bacterial-vs.-other 0.92 (95% CI 0.83-0.99), and viral-vs.-other 0.91 (95% CI 0.82-0.98). With further study, IMX-BVN-1 could provide a tool for assessing patients with suspected infection and sepsis at hospital admission.
提高对细菌和病毒感染的识别能力,可降低脓毒症的发病率,减少抗生素的过度使用,并降低医疗保健成本。在这里,我们开发了一种基于宿主基因表达的通用分类器,用于急性细菌和病毒感染。我们使用来自 18 项回顾性转录组学研究的训练数据(N=1069)。仅使用 29 个预先选择的宿主 mRNA,我们使用神经网络分类器进行训练,细菌与其他分类的受试者工作特征曲线下面积(AUROC)为 0.92(95%CI 0.90-0.93),病毒与其他分类的 AUROC 为 0.92(95%CI 0.90-0.93)。然后,我们在没有重新训练的情况下,将这个分类器(inflammatix-bacterial-viral-noninfected-version 1,IMX-BVN-1)应用于一个独立的队列(N=163)。在这个队列中,IMX-BVN-1 的 AUROC 为:细菌与其他分类的 0.86(95%CI 0.77-0.93),病毒与其他分类的 0.85(95%CI 0.76-0.93)。在入院后 36 小时内入组的患者(N=70)中,IMX-BVN-1 的 AUROC 为:细菌与其他分类的 0.92(95%CI 0.83-0.99),病毒与其他分类的 0.91(95%CI 0.82-0.98)。通过进一步研究,IMX-BVN-1 可能成为评估疑似感染和入院时脓毒症患者的一种工具。