Suppr超能文献

基于多形性胶质母细胞瘤基因组景观分析的免疫浸润相关预后评分系统的开发

Development of an Immune Infiltration-Related Prognostic Scoring System Based on the Genomic Landscape Analysis of Glioblastoma Multiforme.

作者信息

Tang Guihua, Yin Wen

机构信息

Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, China.

Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China.

出版信息

Front Oncol. 2020 Feb 18;10:154. doi: 10.3389/fonc.2020.00154. eCollection 2020.

Abstract

Glioblastoma multiforme (GBM) is the most common deadly brain malignancy and lacks effective therapies. Immunotherapy acts as a promising novel strategy, but not for all GBM patients. Therefore, classifying these patients into different prognostic groups is urgent for better personalized management. The Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to estimate the fraction of 22 types of immune-infiltrating cells, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct an immune infiltration-related prognostic scoring system (IIRPSS). Additionally, a quantitative predicting survival nomogram was also established based on the immune risk score (IRS) derived from the IIRPSS. Moreover, we also preliminarily explored the differences in the immune microenvironment between different prognostic groups. There was a total of 310 appropriate GBM samples (239 from TCGA and 71 from CGGA) included in further analyses after CIBERSORT filtering and data processing. The IIRPSS consisting of 17 types of immune cell fractions was constructed in TCGA cohort, the patients were successfully classified into different prognostic groups based on their immune risk score ( = 1e-10). What's more, the prognostic performance of the IIRPSS was validated in CGGA cohort ( = 0.005). The nomogram also showed a superior predicting value. (The predicting AUC for 1-, 2-, and 3-year were 0.754, 0.813, and 0.871, respectively). The immune microenvironment analyses reflected a significant immune response and a higher immune checkpoint expression in high-risk immune group. Our study constructed an IIRPSS, which maybe valuable to help clinicians select candidates most likely to benefit from immunological checkpoint inhibitors (ICIs) and laid the foundation for further improving personalized immunotherapy in patients with GBM.

摘要

多形性胶质母细胞瘤(GBM)是最常见的致命性脑恶性肿瘤,且缺乏有效的治疗方法。免疫疗法是一种有前景的新策略,但并非对所有GBM患者都有效。因此,为了更好地进行个性化管理,迫切需要将这些患者分为不同的预后组。使用通过估计RNA转录本相对子集进行细胞类型鉴定(CIBERSORT)算法来估计22种免疫浸润细胞的比例,并进行最小绝对收缩和选择算子(LASSO)Cox回归分析以构建免疫浸润相关预后评分系统(IIRPSS)。此外,还基于从IIRPSS得出的免疫风险评分(IRS)建立了定量预测生存列线图。此外,我们还初步探讨了不同预后组之间免疫微环境的差异。经过CIBERSORT筛选和数据处理后,共有310个合适的GBM样本(239个来自TCGA,71个来自CGGA)纳入进一步分析。在TCGA队列中构建了由17种免疫细胞比例组成的IIRPSS,根据免疫风险评分(= 1e - 10)将患者成功分为不同的预后组。此外,IIRPSS的预后性能在CGGA队列中得到验证(= 0.005)。列线图也显示出卓越的预测价值。(1年、2年和3年的预测AUC分别为0.754、0.813和0.871)。免疫微环境分析反映了高风险免疫组中显著的免疫反应和更高的免疫检查点表达。我们的研究构建了IIRPSS,这可能有助于临床医生选择最有可能从免疫检查点抑制剂(ICI)中获益的患者,为进一步改善GBM患者的个性化免疫治疗奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验