Suppr超能文献

金纳米棒和纳米棱镜在体外和体内介导不同的光热细胞死亡机制。

Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo.

机构信息

Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.

Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.

出版信息

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13718-13730. doi: 10.1021/acsami.0c02022. Epub 2020 Mar 16.

Abstract

Photothermal therapy (PTT) is an efficient method of inducing localized hyperthermia and can be achieved using gold nanoparticles as photothermal agents. However, there are many hurdles to get over before this therapy can safely reach the clinics, including nanoparticles' optimal shape and the accurate prediction of cellular responses. Here, we describe the synthesis of gold nanorods and nanoprisms with similar surface plasmon resonances in the near-infrared (NIR) and comparable photothermal conversion efficiencies and characterize the response to NIR irradiation in two biological systems, melanoma cells and the small invertebrate . By integrating animal, cellular, and molecular biology approaches, we show a diverse outcome of nanorods and nanoprisms on the two systems, sustained by the elicitation of different pathways, from necrosis to programmed cell death mechanisms (apoptosis and necroptosis). The comparative multilevel analysis shows great accuracy of in vivo invertebrate models to predict overall responses to photothermal challenging and superior photothermal performance of nanoprisms. Understanding the molecular pathways of these responses may help develop optimized nanoheaters that, safe by design, may improve PTT efficacy for clinical purposes.

摘要

光热疗法(PTT)是一种有效的诱导局部热疗的方法,可以使用金纳米粒子作为光热剂来实现。然而,在这种疗法能够安全地进入临床之前,还有许多障碍需要克服,包括纳米粒子的最佳形状和对细胞反应的准确预测。在这里,我们描述了具有相似近红外(NIR)表面等离子体共振和可比光热转换效率的金纳米棒和纳米棱镜的合成,并在黑色素瘤细胞和小型无脊椎动物这两个生物系统中对其对 NIR 照射的反应进行了表征。通过整合动物、细胞和分子生物学方法,我们展示了纳米棒和纳米棱镜在这两个系统上的不同结果,这是由不同途径的激发所支撑的,从坏死到程序性细胞死亡机制(细胞凋亡和坏死性凋亡)。比较多层次的分析表明,体内无脊椎动物模型对光热挑战性的整体反应具有很高的预测准确性,并且纳米棱镜具有优越的光热性能。了解这些反应的分子途径可能有助于开发优化的纳米加热器,这些加热器通过设计可以提高 PTT 疗效,以达到临床目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验