Suppr超能文献

耐盐和盐敏感的幼苗在应对盐胁迫时的脂解事件中表现出显著的差异。

Salt-tolerant and -sensitive seedlings exhibit noteworthy differences in lipolytic events in response to salt stress.

机构信息

Laboratory of Plant Physiology, Department of Botany, University of Delhi, Delhi, India.

出版信息

Plant Signal Behav. 2020 Apr 2;15(4):1737451. doi: 10.1080/15592324.2020.1737451. Epub 2020 Mar 6.

Abstract

Present findings hypothesize that salt-tolerant and -sensitive oilseed plants are expected to exhibit deviant patterns of growth through lipolytic events in seedling cotyledons. It reports the growth response and different lipolytic mechanisms operating during oil body (OB) mobilization in the seedling cotyledons of salt-tolerant (DRSH 1) and salt-sensitive (PSH 1962) varieties of sunflower ( L.). Salt tolerance or sensitivity to 120 mM NaCl correlates with high proteolytic degradation of OB membrane proteins, particularly oleosins, whereas salt-sensitive seedling cotyledons exhibit negligible proteolytic activity, thereby retaining OB membrane integrity for a longer time. High lipoxygenase (LOX) activity and its further upregulation by salt stress are the unique features of salt-sensitive sunflower seedlings. Salt-tolerant seedling cotyledons exhibit noteworthy modulation of phospholipase-D (PLD) activity by salt stress. Salt-sensitive seedling cotyledons exhibit higher lipase activity than salt-sensitive ones and enzyme activity is downregulated by salt stress. Salt-sensitive variety exhibits higher lipid accumulation and faster lipid mobilization with seedling development than salt-tolerant variety. Accumulation of oleic and linoleic acid in the seedling cotyledons of salt-tolerant and sensitive varieties exhibits differential sensitivity to salt stress. Novel detection of hexanoic acid (6:0) is a noteworthy feature as a response to salt stress in salt-sensitive variety. These findings, thus, provide new information on long-distance salt stress sensing mechanisms at seedling stage of plant development.

摘要

目前的研究结果假设,耐盐和盐敏感的油料作物预计会通过幼苗子叶中的脂解事件表现出不同的生长模式。本文报道了在耐盐(DRSH1)和盐敏感(PSH1962)向日葵品种的幼苗子叶中,油体(OB)动员过程中的生长反应和不同的脂解机制。耐盐性或对 120 mM NaCl 的敏感性与 OB 膜蛋白,特别是油体蛋白的高蛋白水解降解有关,而盐敏感的幼苗子叶表现出可忽略不计的蛋白水解活性,从而更长时间地保持 OB 膜的完整性。高脂氧合酶(LOX)活性及其对盐胁迫的进一步上调是盐敏感向日葵幼苗的独特特征。耐盐幼苗子叶对盐胁迫的磷脂酶-D(PLD)活性表现出显著的调节作用。盐敏感的幼苗子叶的脂肪酶活性高于盐敏感的幼苗子叶,并且酶活性在盐胁迫下被下调。盐敏感品种在幼苗发育过程中表现出比耐盐品种更高的脂质积累和更快的脂质动员。耐盐和敏感品种幼苗子叶中油酸和亚油酸的积累对盐胁迫表现出不同的敏感性。对盐敏感品种中己酸(6:0)的新检测是对盐胁迫响应的一个显著特征。这些发现为植物发育幼苗阶段的远距离盐胁迫感应机制提供了新的信息。

相似文献

1
Salt-tolerant and -sensitive seedlings exhibit noteworthy differences in lipolytic events in response to salt stress.
Plant Signal Behav. 2020 Apr 2;15(4):1737451. doi: 10.1080/15592324.2020.1737451. Epub 2020 Mar 6.
6
S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings.
Physiol Plant. 2018 Jan;162(1):49-72. doi: 10.1111/ppl.12641. Epub 2017 Oct 26.
8
Biochemical mechanisms regulating salt tolerance in sunflower.
Plant Signal Behav. 2019;14(12):1670597. doi: 10.1080/15592324.2019.1670597. Epub 2019 Sep 30.
10
Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress.
Plant Signal Behav. 2019;14(11):1667730. doi: 10.1080/15592324.2019.1667730. Epub 2019 Sep 17.

引用本文的文献

4
Disclosing the molecular basis of salinity priming in olive trees using proteogenomic model discovery.
Plant Physiol. 2023 Mar 17;191(3):1913-1933. doi: 10.1093/plphys/kiac572.
5
Regulation of Heat Stress in () Provides Novel Insight into the Functions of Plant RNase H1s.
Int J Mol Sci. 2022 Aug 17;23(16):9270. doi: 10.3390/ijms23169270.
6
Comparative Physiological and Transcriptome Profiles Uncover Salt Tolerance Mechanisms in Alfalfa.
Front Plant Sci. 2022 Jun 9;13:931619. doi: 10.3389/fpls.2022.931619. eCollection 2022.
8
Galactolipid and Phospholipid Profile and Proteome Alterations in Soybean Leaves at the Onset of Salt Stress.
Front Plant Sci. 2021 Mar 17;12:644408. doi: 10.3389/fpls.2021.644408. eCollection 2021.

本文引用的文献

1
Fatty Acid Profile Changes During Gradual Soil Water Depletion in Oats Suggests a Role for Jasmonates in Coping With Drought.
Front Plant Sci. 2018 Jul 31;9:1077. doi: 10.3389/fpls.2018.01077. eCollection 2018.
2
Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles.
Front Plant Sci. 2016 Apr 12;7:495. doi: 10.3389/fpls.2016.00495. eCollection 2016.
3
Priming of plant resistance by natural compounds. Hexanoic acid as a model.
Front Plant Sci. 2014 Oct 1;5:488. doi: 10.3389/fpls.2014.00488. eCollection 2014.
5
Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease.
J Plant Physiol. 2013 Jan 15;170(2):146-54. doi: 10.1016/j.jplph.2012.09.018. Epub 2012 Dec 19.
6
Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis.
J Biol Chem. 2012 Mar 9;287(11):8286-96. doi: 10.1074/jbc.M111.274274. Epub 2012 Jan 24.
8
Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity.
Plant Cell Environ. 2010 Apr;33(4):627-35. doi: 10.1111/j.1365-3040.2009.02087.x. Epub 2009 Nov 24.
10
Plant phospholipid signaling: "in a nutshell".
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S260-5. doi: 10.1194/jlr.R800098-JLR200. Epub 2008 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验