Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States.
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae070.
Integrating multiple observational studies to make unconfounded causal or descriptive comparisons of group potential outcomes in a large natural population is challenging. Moreover, retrospective cohorts, being convenience samples, are usually unrepresentative of the natural population of interest and have groups with unbalanced covariates. We propose a general covariate-balancing framework based on pseudo-populations that extends established weighting methods to the meta-analysis of multiple retrospective cohorts with multiple groups. Additionally, by maximizing the effective sample sizes of the cohorts, we propose a FLEXible, Optimized, and Realistic (FLEXOR) weighting method appropriate for integrative analyses. We develop new weighted estimators for unconfounded inferences on wide-ranging population-level features and estimands relevant to group comparisons of quantitative, categorical, or multivariate outcomes. Asymptotic properties of these estimators are examined. Through simulation studies and meta-analyses of TCGA datasets, we demonstrate the versatility and reliability of the proposed weighting strategy, especially for the FLEXOR pseudo-population.
将多个观察性研究整合起来,以便在大的自然人群中对组潜在结果进行无混杂的因果或描述性比较,这是具有挑战性的。此外,回顾性队列作为便利样本,通常不能代表感兴趣的自然人群,而且具有不平衡协变量的组。我们提出了一个基于伪群体的一般协变量平衡框架,将已建立的加权方法扩展到具有多个组的多个回顾性队列的荟萃分析中。此外,通过最大化队列的有效样本量,我们提出了一种适用于综合分析的 FLEXible、Optimized、and Realistic (FLEXOR) 加权方法。我们为广泛的人群水平特征和与定量、分类或多变量结果的组比较相关的估计量的无混杂推断开发了新的加权估计量。检验了这些估计量的渐近性质。通过 TCGA 数据集的模拟研究和荟萃分析,我们展示了所提出的加权策略的多功能性和可靠性,特别是对于 FLEXOR 伪群体。