Suppr超能文献

肾脏中的葡萄糖转运体:在健康和疾病中的作用。

Glucose transporters in the kidney in health and disease.

机构信息

Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.

Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.

出版信息

Pflugers Arch. 2020 Sep;472(9):1345-1370. doi: 10.1007/s00424-020-02361-w. Epub 2020 Mar 6.

Abstract

The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.

摘要

肾脏过滤大量的葡萄糖。为了防止这种有价值燃料的流失,肾脏的管状系统,特别是近端肾小管,已经被编程来重吸收所有滤过的葡萄糖。这一过程涉及到顶端膜上的钠-葡萄糖协同转运蛋白 SGLT2 和 SGLT1,以及基底外侧膜上的易化葡萄糖转运蛋白 GLUT2。近端肾小管还会产生新的葡萄糖,特别是在吸收后阶段,但也会增强碳酸氢盐的形成并维持酸碱平衡。近端肾小管重吸收或形成的葡萄糖主要被摄取到管周毛细血管中,并返回全身循环,或提供给进一步摄取葡萄糖的远端管状段,这些葡萄糖通过基底外侧 GLUT1 摄取。最近的研究提供了对肾脏葡萄糖重吸收、形成和利用的协调的深入了解。此外,对疾病状态下肾脏葡萄糖转运的理解也在不断加深。这包括糖尿病中的肾脏,此时肾脏葡萄糖保留变得适应不良,并导致高血糖。此外,通过钠-葡萄糖协同转运蛋白 SGLT2 促进了葡萄糖的重吸收与钠的保留,这会引起继发性的有害影响。因此,SGLT2 抑制剂是新的抗高血糖药物,可以保护肾脏和心脏免受衰竭。最近的研究发现 SGLT1 具有独特的作用,这对急性肾损伤和在致密斑处的葡萄糖感应有影响。这篇综述讨论了肾脏葡萄糖转运的既定和新兴概念,并概述了在健康和疾病中更好地理解肾脏葡萄糖处理的必要性。

相似文献

1
Glucose transporters in the kidney in health and disease.
Pflugers Arch. 2020 Sep;472(9):1345-1370. doi: 10.1007/s00424-020-02361-w. Epub 2020 Mar 6.
2
Renal Tubular Handling of Glucose and Fructose in Health and Disease.
Compr Physiol. 2021 Dec 29;12(1):2995-3044. doi: 10.1002/cphy.c210030.
4
Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.
Diabetologia. 2017 Feb;60(2):215-225. doi: 10.1007/s00125-016-4157-3. Epub 2016 Nov 22.
5
The tubular hypothesis of nephron filtration and diabetic kidney disease.
Nat Rev Nephrol. 2020 Jun;16(6):317-336. doi: 10.1038/s41581-020-0256-y. Epub 2020 Mar 9.
6
Gene deletion of the Na-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion.
Am J Physiol Renal Physiol. 2019 Jun 1;316(6):F1201-F1210. doi: 10.1152/ajprenal.00111.2019. Epub 2019 Apr 17.
8
[Contribution of the kidney to glucose homeostasis].
Med Clin (Barc). 2013 Sep;141 Suppl 2:26-30. doi: 10.1016/S0025-7753(13)70060-5.
9
State-of-the-Art-Review: Mechanisms of Action of SGLT2 Inhibitors and Clinical Implications.
Am J Hypertens. 2024 Oct 14;37(11):841-852. doi: 10.1093/ajh/hpae092.
10
Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.
Diab Vasc Dis Res. 2015 Mar;12(2):78-89. doi: 10.1177/1479164114561992. Epub 2015 Jan 23.

引用本文的文献

2
A lipid atlas of the human kidney.
Sci Adv. 2025 Jun 13;11(24):eadu3730. doi: 10.1126/sciadv.adu3730. Epub 2025 Jun 11.
3
Liver-Directed Gene Therapy Mitigates Early Nephropathy in Murine Glycogen Storage Disease Type Ia.
J Inherit Metab Dis. 2025 Jul;48(4):e70048. doi: 10.1002/jimd.70048.
4
GLUT2/SLC2A2 is a bi-directional urate transporter.
J Biol Chem. 2025 May;301(5):108485. doi: 10.1016/j.jbc.2025.108485. Epub 2025 Apr 8.
5
ASK1 limits kidney glucose reabsorption, growth, and mid-late proximal tubule KIM-1 induction when diabetes and Western diet are combined with SGLT2 inhibition.
Am J Physiol Renal Physiol. 2025 May 1;328(5):F662-F675. doi: 10.1152/ajprenal.00031.2025. Epub 2025 Mar 28.
6
Renal glucosuria in children.
World J Clin Pediatr. 2025 Mar 9;14(1):91622. doi: 10.5409/wjcp.v14.i1.91622.
8
Randomized, Placebo-Controlled Trial on the Renal and Systemic Hemodynamic Effects of Empagliflozin.
Kidney Int Rep. 2024 Oct 29;10(1):134-144. doi: 10.1016/j.ekir.2024.10.019. eCollection 2025 Jan.
10
Consensus Report on the Use of Continuous Glucose Monitoring in Chronic Kidney Disease and Diabetes.
J Diabetes Sci Technol. 2025 Jan;19(1):217-245. doi: 10.1177/19322968241292041. Epub 2024 Nov 29.

本文引用的文献

1
Gene knockout of the Na-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion.
Am J Physiol Renal Physiol. 2020 May 1;318(5):F1100-F1112. doi: 10.1152/ajprenal.00607.2019. Epub 2020 Mar 2.
3
Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets.
Diabetes. 2020 May;69(5):902-914. doi: 10.2337/db19-0888. Epub 2020 Jan 2.
4
SGLT2 inhibition increases serum copeptin in young adults with type 1 diabetes.
Diabetes Metab. 2020 Jun;46(3):203-209. doi: 10.1016/j.diabet.2019.11.006. Epub 2019 Dec 6.
5
Renal effects of SGLT2 inhibitors: an update.
Curr Opin Nephrol Hypertens. 2020 Mar;29(2):190-198. doi: 10.1097/MNH.0000000000000584.
6
Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
Am J Cardiol. 2019 Dec 15;124 Suppl 1(Suppl 1):S28-S35. doi: 10.1016/j.amjcard.2019.10.027.
7
Preventing and Treating Heart Failure with Sodium-Glucose Co-Transporter 2 Inhibitors.
Am J Cardiol. 2019 Dec 15;124 Suppl 1:S20-S27. doi: 10.1016/j.amjcard.2019.10.026.
9
Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction.
N Engl J Med. 2019 Nov 21;381(21):1995-2008. doi: 10.1056/NEJMoa1911303. Epub 2019 Sep 19.
10
SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis.
Lancet Diabetes Endocrinol. 2019 Nov;7(11):845-854. doi: 10.1016/S2213-8587(19)30256-6. Epub 2019 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验