School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China.
Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Shanghai 201210, PR China.
J Control Release. 2020 May 10;321:734-743. doi: 10.1016/j.jconrel.2020.03.007. Epub 2020 Mar 5.
Tumor microenvironment (TME)-responsive nanoformulations that catalyze a cascade of intracellular redox reactions showed promise for tumor treatment with high specificity and efficiency. In this study, we report Cu-doped zeolitic imidazolate frameworks-coated polydopamine nanoparticles (PDA@Cu/ZIF-8 NPs) for glutathione-triggered and photothermal-reinforced sequential catalytic therapy against breast cancer. In the TME, the PDA@Cu/ZIF-8 NPs could initially react with antioxidant glutathione (GSH), inducing GSH depletion and Cu generation. Whereafter, the generated Cu would catalyze local HO to produce highly toxic hydroxyl radicals (·OH) through an efficient Fenton-like reaction even in weakly acidity. Importantly, the PDA could exert excellent photothermal conversion effect to simultaneously accelerate GSH consumption and improve the Fenton-like reaction for further expanding the intracellular oxidative stress, which innovatively achieves a synergistic photothermal-chemodynamic therapy for highly efficient anticancer treatment.
肿瘤微环境(TME)响应型纳米制剂可催化一系列细胞内氧化还原反应,有望实现高特异性和高效率的肿瘤治疗。在这项研究中,我们报告了铜掺杂沸石咪唑酯骨架-8 涂层聚多巴胺纳米粒子(PDA@Cu/ZIF-8 NPs)用于谷胱甘肽触发和光热增强的顺序催化治疗乳腺癌。在 TME 中,PDA@Cu/ZIF-8 NPs 最初可以与抗氧化剂谷胱甘肽(GSH)反应,诱导 GSH 耗竭和 Cu 的产生。随后,生成的 Cu 通过有效的类芬顿反应即使在弱酸性条件下也能催化局部 HO 生成高毒性的羟基自由基(·OH)。重要的是,PDA 可以发挥出色的光热转换效应,同时加速 GSH 的消耗并改善类芬顿反应,以进一步扩大细胞内氧化应激,从而创新性地实现了高效抗癌治疗的协同光热-化学动力学治疗。