Suppr超能文献

慢性感染中微生物的社会生活。

The social life of microbes in chronic infection.

机构信息

School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30332, United States; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States.

School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30332, United States; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States.

出版信息

Curr Opin Microbiol. 2020 Feb;53:44-50. doi: 10.1016/j.mib.2020.02.003. Epub 2020 Mar 4.

Abstract

Chronic infections place a significant burden on healthcare systems, requiring over $25 billion in treatment annually in the United States alone [1,2]. Notably, the majority of chronic infections, which include cystic fibrosis (CF), chronic wounds, otitis media, periodontitis, urinary tract infections, and osteomyelitis, are considered polymicrobial and are often recalcitrant to antibiotic treatment [1-9]. Although we know that diverse communities of microbes comprise these infections, how microbes interact and the impacts of these interactions on human disease are less understood. Here, we discuss recent advances in our understanding of how bacteria communicate in chronic infection, with a focus on Staphylococcus aureus and Pseudomonas aeruginosa, and we highlight outstanding questions and controversies in the field.

摘要

慢性感染给医疗保健系统带来了巨大负担,仅在美国每年就需要超过 250 亿美元的治疗费用[1,2]。值得注意的是,大多数慢性感染,包括囊性纤维化(CF)、慢性伤口、中耳炎、牙周炎、尿路感染和骨髓炎,被认为是多微生物的,并且经常对抗生素治疗有抗药性[1-9]。尽管我们知道这些感染是由不同种类的微生物组成的,但我们对微生物如何相互作用以及这些相互作用对人类疾病的影响了解甚少。在这里,我们讨论了我们对慢性感染中细菌如何相互交流的理解的最新进展,重点是金黄色葡萄球菌和铜绿假单胞菌,并强调了该领域的悬而未决的问题和争议。

相似文献

1
The social life of microbes in chronic infection.
Curr Opin Microbiol. 2020 Feb;53:44-50. doi: 10.1016/j.mib.2020.02.003. Epub 2020 Mar 4.
2
and communication in biofilm infections: insights through network and database construction.
Crit Rev Microbiol. 2019 Sep-Nov;45(5-6):712-728. doi: 10.1080/1040841X.2019.1700209. Epub 2019 Dec 13.
3
Help, hinder, hide and harm: what can we learn from the interactions between and during respiratory infections?
Thorax. 2019 Jul;74(7):684-692. doi: 10.1136/thoraxjnl-2018-212616. Epub 2019 Feb 18.
10
Interspecies interactions induce exploratory motility in .
Elife. 2019 Nov 12;8:e47365. doi: 10.7554/eLife.47365.

引用本文的文献

1
Natural phytochemical-based strategies for antibiofilm applications.
Chin Med. 2025 Jul 1;20(1):96. doi: 10.1186/s13020-025-01147-5.
3
5
Towards improved biofilm models.
Nat Rev Microbiol. 2025 Jan;23(1):57-66. doi: 10.1038/s41579-024-01086-2. Epub 2024 Aug 7.
6
Convergent evolution in toxin detection and resistance provides evidence for conserved bacterial-fungal interactions.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2304382121. doi: 10.1073/pnas.2304382121. Epub 2024 Aug 1.
7
Oxidative stress responses in biofilms.
Biofilm. 2024 May 23;7:100203. doi: 10.1016/j.bioflm.2024.100203. eCollection 2024 Jun.
8
Micrococcal nuclease regulates biofilm formation and dispersal in methicillin-resistant USA300.
mSphere. 2024 May 29;9(5):e0012624. doi: 10.1128/msphere.00126-24. Epub 2024 May 2.
9
Triple threat: how diabetes results in worsened bacterial infections.
Infect Immun. 2024 Sep 10;92(9):e0050923. doi: 10.1128/iai.00509-23. Epub 2024 Mar 25.
10
Metal-Phenolic Networks for Chronic Wounds Therapy.
Int J Nanomedicine. 2023 Nov 8;18:6425-6448. doi: 10.2147/IJN.S434535. eCollection 2023.

本文引用的文献

1
The Staphylococcus aureus Transcriptome during Cystic Fibrosis Lung Infection.
mBio. 2019 Nov 19;10(6):e02774-19. doi: 10.1128/mBio.02774-19.
2
Interspecies interactions induce exploratory motility in .
Elife. 2019 Nov 12;8:e47365. doi: 10.7554/eLife.47365.
3
Microbe Profile: : opportunistic pathogen and lab rat.
Microbiology (Reading). 2020 Jan;166(1):30-33. doi: 10.1099/mic.0.000860.
4
Regulation of Virulence.
Microbiol Spectr. 2019 Apr 5;7(2). doi: 10.1128/microbiolspec.GPP3-0031-2018.
5
Evolution of the quorum-sensing hierarchy.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7027-7032. doi: 10.1073/pnas.1819796116. Epub 2019 Mar 8.
6
Social cheating in a quorum-sensing variant.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7021-7026. doi: 10.1073/pnas.1819801116. Epub 2019 Mar 7.
7
Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk.
mBio. 2019 Mar 5;10(2):e00146-19. doi: 10.1128/mBio.00146-19.
8
Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections.
Front Microbiol. 2018 Oct 8;9:2419. doi: 10.3389/fmicb.2018.02419. eCollection 2018.
10
Genome Plasticity of -Defective Staphylococcus aureus during Clinical Infection.
Infect Immun. 2018 Sep 21;86(10). doi: 10.1128/IAI.00331-18. Print 2018 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验