Suppr超能文献

用于液相色谱-质谱数据蛋白质组学工作流程标准化的交互式网络工具

Interactive Web Tool for Standardizing Proteomics Workflow for Liquid Chromatography-Mass Spectrometry Data.

作者信息

Srivastava Sudhir, Merchant Michael, Rai Anil, Rai Shesh N

机构信息

Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.

Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, Kentucky, United States of America.

出版信息

J Proteomics Bioinform. 2019;12(4):85-88. Epub 2019 May 23.

Abstract

INTRODUCTION

The proteomics experiments involve several steps and there are many choices available for each step in the workflow. Therefore, standardization of proteomics workflow is an essential task for design of proteomics experiments. However, there are challenges associated with the quantitative measurements based on liquid chromatography-mass spectrometry such as heterogeneity due to technical variability and missing values.

METHODS

We introduce a web application, Proteomics Workflow Standardization Tool (PWST) to standardize the proteomics workflow. The tool will be helpful in deciding the most suitable choice for each step of the experimentation. This is based on identifying steps/choices with least variability such as comparing Coefficient of Variation (CV). We demonstrate the tool on data with categorical and continuous variables. We have used the special cases of general linear model, analysis of covariance and analysis of variance with fixed effects to study the effects due to various sources of variability. We have provided various options that will aid in finding the contribution of sum of squares for each variable and the CV. The user can analyze the data variability at protein and peptide level even in the presence of missing values.

AVAILABILITY AND IMPLEMENTATION

The source code for "PWST" is written in R and implemented as shiny web application that can be accessed freely from https://ulbbf.shinyapps.io/pwst/.

摘要

引言

蛋白质组学实验涉及多个步骤,并且在工作流程的每个步骤都有多种选择。因此,蛋白质组学工作流程的标准化是蛋白质组学实验设计的一项重要任务。然而,基于液相色谱 - 质谱的定量测量存在挑战,例如由于技术变异性导致的异质性和缺失值。

方法

我们引入了一个网络应用程序,蛋白质组学工作流程标准化工具(PWST)来标准化蛋白质组学工作流程。该工具将有助于为实验的每个步骤确定最合适的选择。这是基于识别变异性最小的步骤/选择,例如比较变异系数(CV)。我们在具有分类变量和连续变量的数据上演示了该工具。我们使用了一般线性模型、协方差分析和固定效应方差分析的特殊情况来研究各种变异性来源的影响。我们提供了各种选项,有助于找到每个变量的平方和贡献以及CV。即使存在缺失值,用户也可以在蛋白质和肽水平分析数据变异性。

可用性和实现

“PWST”的源代码用R编写,并实现为一个闪亮的网络应用程序,可从https://ulbbf.shinyapps.io/pwst/免费访问。

相似文献

2
Standardizing Proteomics Workflow for Liquid Chromatography-Mass Spectrometry: Technical and Statistical Considerations.
J Proteomics Bioinform. 2019;12(3):48-55. doi: 10.35248/0974-276x.19.12.496. Epub 2019 Apr 4.
3
ProVision: a web-based platform for rapid analysis of proteomics data processed by MaxQuant.
Bioinformatics. 2020 Dec 8;36(19):4965-4967. doi: 10.1093/bioinformatics/btaa620.
5
Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics.
PLoS Comput Biol. 2022 Aug 29;18(8):e1010420. doi: 10.1371/journal.pcbi.1010420. eCollection 2022 Aug.
6
PSpecteR: A User-Friendly and Interactive Application for Visualizing Top-Down and Bottom-Up Proteomics Data in R.
J Proteome Res. 2021 Apr 2;20(4):2014-2020. doi: 10.1021/acs.jproteome.0c00857. Epub 2021 Mar 4.
7
APOSTL: An Interactive Galaxy Pipeline for Reproducible Analysis of Affinity Proteomics Data.
J Proteome Res. 2016 Dec 2;15(12):4747-4754. doi: 10.1021/acs.jproteome.6b00660. Epub 2016 Oct 21.
8
msVolcano: A flexible web application for visualizing quantitative proteomics data.
Proteomics. 2016 Sep;16(18):2491-4. doi: 10.1002/pmic.201600167.
9
10
A practical data processing workflow for multi-OMICS projects.
Biochim Biophys Acta. 2014 Jan;1844(1 Pt A):52-62. doi: 10.1016/j.bbapap.2013.02.029. Epub 2013 Mar 15.

引用本文的文献

2
Disruption of the mouse liver epitranscriptome by long-term aroclor 1260 exposure.
Environ Toxicol Pharmacol. 2023 Jun;100:104138. doi: 10.1016/j.etap.2023.104138. Epub 2023 May 1.
4
Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver.
Environ Epigenet. 2021 Sep 17;7(1):dvab008. doi: 10.1093/eep/dvab008. eCollection 2021.

本文引用的文献

1
Standardizing Proteomics Workflow for Liquid Chromatography-Mass Spectrometry: Technical and Statistical Considerations.
J Proteomics Bioinform. 2019;12(3):48-55. doi: 10.35248/0974-276x.19.12.496. Epub 2019 Apr 4.
2
Overview of peptide and protein analysis by mass spectrometry.
Curr Protoc Mol Biol. 2014 Oct 1;108:10.21.1-10.21.30. doi: 10.1002/0471142727.mb1021s108.
3
A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics.
Appl Microbiol Biotechnol. 2013 Jun;97(11):4749-62. doi: 10.1007/s00253-013-4897-7. Epub 2013 Apr 27.
4
Normalization and missing value imputation for label-free LC-MS analysis.
BMC Bioinformatics. 2012;13 Suppl 16(Suppl 16):S5. doi: 10.1186/1471-2105-13-S16-S5. Epub 2012 Nov 5.
5
6
Modeling experimental design for proteomics.
Methods Mol Biol. 2010;673:223-30. doi: 10.1007/978-1-60761-842-3_14.
8
pcaMethods--a bioconductor package providing PCA methods for incomplete data.
Bioinformatics. 2007 May 1;23(9):1164-7. doi: 10.1093/bioinformatics/btm069. Epub 2007 Mar 7.
9
Mass spectrometry of peptides and proteins.
Methods. 2005 Mar;35(3):211-22. doi: 10.1016/j.ymeth.2004.08.013. Epub 2005 Jan 20.
10
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics. 2003 Jan 22;19(2):185-93. doi: 10.1093/bioinformatics/19.2.185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验