Suppr超能文献

BIRCH:一种用于 Bottom-Up 质谱蛋白质组学数据中批处理效应评估、校正和可视化的自动化工作流程。

BIRCH: An Automated Workflow for Evaluation, Correction, and Visualization of Batch Effect in Bottom-Up Mass Spectrometry-Based Proteomics Data.

机构信息

Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

出版信息

J Proteome Res. 2023 Feb 3;22(2):471-481. doi: 10.1021/acs.jproteome.2c00671. Epub 2023 Jan 25.

Abstract

Recent surges in large-scale mass spectrometry (MS)-based proteomics studies demand a concurrent rise in methods to facilitate reliable and reproducible data analysis. Quantification of proteins in MS analysis can be affected by variations in technical factors such as sample preparation and data acquisition conditions leading to batch effects, which adds to noise in the data set. This may in turn affect the effectiveness of any biological conclusions derived from the data. Here we present Batch-effect Identification, Representation, and Correction of Heterogeneous data (BIRCH), a workflow for analysis and correction of batch effect through an automated, versatile, and easy to use web-based tool with the goal of eliminating technical variation. BIRCH also supports diagnosis of the data to check for the presence of batch effects, feasibility of batch correction, and imputation to deal with missing values in the data set. To illustrate the relevance of the tool, we explore two case studies, including an iPSC-derived cell study and a Covid vaccine study to show different context-specific use cases. Ultimately this tool can be used as an extremely powerful approach for eliminating technical bias while retaining biological bias, toward understanding disease mechanisms and potential therapeutics.

摘要

最近大规模基于质谱(MS)的蛋白质组学研究的激增要求同时提高方法的可靠性和可重复性数据分析。MS 分析中蛋白质的定量可能会受到样品制备和数据采集条件等技术因素变化的影响,从而导致批次效应,这会增加数据集的噪声。这反过来又可能影响从数据中得出的任何生物学结论的有效性。在这里,我们提出了 Batch-effect Identification, Representation, and Correction of Heterogeneous data (BIRCH),这是一种通过自动化、通用且易于使用的基于网络的工具进行分析和校正批次效应的工作流程,目的是消除技术变化。BIRCH 还支持对数据进行诊断,以检查是否存在批次效应、批次校正的可行性以及对数据集缺失值的插补。为了说明该工具的相关性,我们探讨了两个案例研究,包括 iPSC 衍生细胞研究和新冠疫苗研究,以展示不同特定于上下文的用例。最终,该工具可用作消除技术偏差同时保留生物学偏差的极其强大的方法,以了解疾病机制和潜在的治疗方法。

相似文献

1
2
An automated proteomic data analysis workflow for mass spectrometry.
BMC Bioinformatics. 2009 Oct 8;10 Suppl 11(Suppl 11):S17. doi: 10.1186/1471-2105-10-S11-S17.
3
Replication of single-cell proteomics data reveals important computational challenges.
Expert Rev Proteomics. 2021 Oct;18(10):835-843. doi: 10.1080/14789450.2021.1988571. Epub 2021 Oct 25.
6
Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
J Proteome Res. 2018 Jan 5;17(1):420-428. doi: 10.1021/acs.jproteome.7b00623. Epub 2017 Nov 10.
7
Diagnostics and correction of batch effects in large-scale proteomic studies: a tutorial.
Mol Syst Biol. 2021 Aug;17(8):e10240. doi: 10.15252/msb.202110240.
10
Perspectives for better batch effect correction in mass-spectrometry-based proteomics.
Comput Struct Biotechnol J. 2022 Aug 12;20:4369-4375. doi: 10.1016/j.csbj.2022.08.022. eCollection 2022.

引用本文的文献

1
Myocardial Proteome in Human Heart Failure With Preserved Ejection Fraction.
J Am Heart Assoc. 2025 Mar 18;14(6):e038945. doi: 10.1161/JAHA.124.038945. Epub 2025 Mar 13.
3
Bridging the Gap From Proteomics Technology to Clinical Application: Highlights From the 68th Benzon Foundation Symposium.
Mol Cell Proteomics. 2024 Dec;23(12):100877. doi: 10.1016/j.mcpro.2024.100877. Epub 2024 Nov 9.
4
Targeting low levels of MIF expression as a potential therapeutic strategy for ALS.
Cell Rep Med. 2024 May 21;5(5):101546. doi: 10.1016/j.xcrm.2024.101546. Epub 2024 May 3.
5
Proteomics of the heart.
Physiol Rev. 2024 Jul 1;104(3):931-982. doi: 10.1152/physrev.00026.2023. Epub 2024 Feb 1.

本文引用的文献

1
Assessing normalization methods in mass spectrometry-based proteome profiling of clinical samples.
Biosystems. 2022 Jun;215-216:104661. doi: 10.1016/j.biosystems.2022.104661. Epub 2022 Mar 2.
2
Comparative assessment and novel strategy on methods for imputing proteomics data.
Sci Rep. 2022 Jan 20;12(1):1067. doi: 10.1038/s41598-022-04938-0.
3
Standardized Workflow for Precise Mid- and High-Throughput Proteomics of Blood Biofluids.
Clin Chem. 2022 Mar 4;68(3):450-460. doi: 10.1093/clinchem/hvab202.
4
Diagnostics and correction of batch effects in large-scale proteomic studies: a tutorial.
Mol Syst Biol. 2021 Aug;17(8):e10240. doi: 10.15252/msb.202110240.
5
Quantitative single-cell proteomics as a tool to characterize cellular hierarchies.
Nat Commun. 2021 Jun 7;12(1):3341. doi: 10.1038/s41467-021-23667-y.
6
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396. doi: 10.1093/nar/gkab382.
7
A Simple Optimization Workflow to Enable Precise and Accurate Imputation of Missing Values in Proteomic Data Sets.
J Proteome Res. 2021 Jun 4;20(6):3214-3229. doi: 10.1021/acs.jproteome.1c00070. Epub 2021 May 3.
8
Seroprevalence of antibodies to SARS-CoV-2 in healthcare workers: a cross-sectional study.
BMJ Open. 2021 Feb 12;11(2):e043584. doi: 10.1136/bmjopen-2020-043584.
9
A comparative study of evaluating missing value imputation methods in label-free proteomics.
Sci Rep. 2021 Jan 19;11(1):1760. doi: 10.1038/s41598-021-81279-4.
10
BatchServer: A Web Server for Batch Effect Evaluation, Visualization, and Correction.
J Proteome Res. 2021 Jan 1;20(1):1079-1086. doi: 10.1021/acs.jproteome.0c00488. Epub 2020 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验