Suppr超能文献

BIRCH:一种用于 Bottom-Up 质谱蛋白质组学数据中批处理效应评估、校正和可视化的自动化工作流程。

BIRCH: An Automated Workflow for Evaluation, Correction, and Visualization of Batch Effect in Bottom-Up Mass Spectrometry-Based Proteomics Data.

机构信息

Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

出版信息

J Proteome Res. 2023 Feb 3;22(2):471-481. doi: 10.1021/acs.jproteome.2c00671. Epub 2023 Jan 25.

Abstract

Recent surges in large-scale mass spectrometry (MS)-based proteomics studies demand a concurrent rise in methods to facilitate reliable and reproducible data analysis. Quantification of proteins in MS analysis can be affected by variations in technical factors such as sample preparation and data acquisition conditions leading to batch effects, which adds to noise in the data set. This may in turn affect the effectiveness of any biological conclusions derived from the data. Here we present Batch-effect Identification, Representation, and Correction of Heterogeneous data (BIRCH), a workflow for analysis and correction of batch effect through an automated, versatile, and easy to use web-based tool with the goal of eliminating technical variation. BIRCH also supports diagnosis of the data to check for the presence of batch effects, feasibility of batch correction, and imputation to deal with missing values in the data set. To illustrate the relevance of the tool, we explore two case studies, including an iPSC-derived cell study and a Covid vaccine study to show different context-specific use cases. Ultimately this tool can be used as an extremely powerful approach for eliminating technical bias while retaining biological bias, toward understanding disease mechanisms and potential therapeutics.

摘要

最近大规模基于质谱(MS)的蛋白质组学研究的激增要求同时提高方法的可靠性和可重复性数据分析。MS 分析中蛋白质的定量可能会受到样品制备和数据采集条件等技术因素变化的影响,从而导致批次效应,这会增加数据集的噪声。这反过来又可能影响从数据中得出的任何生物学结论的有效性。在这里,我们提出了 Batch-effect Identification, Representation, and Correction of Heterogeneous data (BIRCH),这是一种通过自动化、通用且易于使用的基于网络的工具进行分析和校正批次效应的工作流程,目的是消除技术变化。BIRCH 还支持对数据进行诊断,以检查是否存在批次效应、批次校正的可行性以及对数据集缺失值的插补。为了说明该工具的相关性,我们探讨了两个案例研究,包括 iPSC 衍生细胞研究和新冠疫苗研究,以展示不同特定于上下文的用例。最终,该工具可用作消除技术偏差同时保留生物学偏差的极其强大的方法,以了解疾病机制和潜在的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c46/10318553/f13d60a83d0d/nihms-1912617-f0002.jpg

相似文献

2
An automated proteomic data analysis workflow for mass spectrometry.用于质谱的自动化蛋白质组学数据分析工作流程。
BMC Bioinformatics. 2009 Oct 8;10 Suppl 11(Suppl 11):S17. doi: 10.1186/1471-2105-10-S11-S17.
10
Perspectives for better batch effect correction in mass-spectrometry-based proteomics.基于质谱的蛋白质组学中更好的批次效应校正前景
Comput Struct Biotechnol J. 2022 Aug 12;20:4369-4375. doi: 10.1016/j.csbj.2022.08.022. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验