Suppr超能文献

一个涵盖20种荧光蛋白标签和12种成像条件的图像序列综合数据集,用于超分辨率成像。

A comprehensive dataset of image sequences covering 20 fluorescent protein labels and 12 imaging conditions for use in super-resolution imaging.

作者信息

Moeyaert Benjamien, Dedecker Peter

机构信息

Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium.

出版信息

Data Brief. 2020 Feb 15;29:105273. doi: 10.1016/j.dib.2020.105273. eCollection 2020 Apr.

Abstract

Super-resolution fluorescence microscopy techniques allow imaging fluorescently labelled structures with a resolution that surpasses the diffraction limit of light (approx. 200nm). The quality and, thus, reliability of each of these techniques is strongly dependent on (1) the quality of the optics, (2) the fitness of the specific fluorescent label for the given technique and (3) the algorithms being used. Of these, the fitness of the labels is most subjective, as fitness metrics are scarce, and generating samples with different labels and imaging them is laborious. This prevent rigorous fitness assessment of fluorescent labels. We have developed a mathematical framework for assessing the quality of SOFI data [1], [2], which we used to assess the fitness of 20 different fluorescent protein labels for SOFI imaging. Here, we report this dataset of 2240 image sequences, representing 10 fields of view each of transfected Cos7 cells expressing each of the 20 different fluorescent proteins under 4-12 imaging conditions. The labels span the visible spectrum and include non-photo-transforming and photo-transforming fluorescent proteins. The imaging conditions consist of 4 different excitation powers, each with three different powers of 405 nm light added (except for the blue labels that are excited with 405 nm light). Though this data was in essence generated to assess which labels are best suited for SOFI imaging, it can be used as a benchmark for further development of the SOFI algorithm, or for the development of other super-resolution imaging modalities that benefit from similar input data.

摘要

超分辨率荧光显微镜技术能够对荧光标记的结构进行成像,其分辨率超越了光的衍射极限(约200纳米)。这些技术中每一种的质量以及可靠性都强烈依赖于:(1)光学器件的质量;(2)特定荧光标记对于给定技术的适配性;(3)所使用的算法。其中,标记的适配性最为主观,因为适配性指标稀缺,并且生成带有不同标记的样本并对其成像非常费力。这阻碍了对荧光标记进行严格的适配性评估。我们已经开发了一个用于评估超分辨光学涨落成像(SOFI)数据质量的数学框架[1,2],我们用它来评估20种不同荧光蛋白标记对于SOFI成像的适配性。在此,我们报告这个包含2240个图像序列的数据集,它代表了在4 - 12种成像条件下,分别表达20种不同荧光蛋白的转染Cos7细胞的10个视野。这些标记涵盖了可见光谱,包括非光转化和光转化荧光蛋白。成像条件包括4种不同的激发功率,每种激发功率又额外添加了三种不同功率的405纳米光(除了用405纳米光激发的蓝色标记)。尽管这些数据本质上是为了评估哪些标记最适合SOFI成像而生成的,但它可以用作SOFI算法进一步开发的基准,或者用于开发受益于类似输入数据的其他超分辨率成像模式。

相似文献

10
Live-Cell SOFI Correlation with SMLM and AFM Imaging.活细胞超分辨光学涨落成像与单分子定位显微镜及原子力显微镜成像的相关性
ACS Bio Med Chem Au. 2023 Mar 28;3(3):261-269. doi: 10.1021/acsbiomedchemau.2c00086. eCollection 2023 Jun 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验