From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.
Circ Res. 2020 May 8;126(10):e61-e79. doi: 10.1161/CIRCRESAHA.119.315708. Epub 2020 Mar 10.
Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated.
We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis.
Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of -deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of monocytes with upregulation of genes involved in pMo development, survival, and function. deficiency also led to a significant increase in aorta-associated pMos and protected mice from high-fat diet-induced atherosclerosis.
Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
单核细胞是单核吞噬细胞系统的关键效应细胞,在调节组织内稳态和协调炎症反应方面发挥着关键作用,包括在动脉粥样硬化等慢性炎症性疾病中发挥作用。单核细胞传统上分为 2 个主要亚群,称为经典单核细胞和巡逻单核细胞(pMo),但最近的系统免疫学方法已经确定了这些细胞内存在明显的异质性,并且调节单核细胞群体内稳态的大部分机制仍然未知。我们和其他人之前已经确定 LYN 酪氨酸激酶是调节骨髓细胞生物学的关键负调控因子;然而,LYN 在调节特定单核细胞亚群内稳态中的作用尚未被研究。
我们旨在全面分析单核细胞,以阐明单核细胞内的潜在异质性,并剖析 缺失如何影响单核细胞亚群组成、信号转导和基因表达。我们进一步在动脉粥样硬化模型中测试了这些发现的生物学意义。
通过对经典单核细胞和 pMo 中单核细胞亚群和信号通路激活模式的质谱细胞分析,揭示了不同的基线信号特征和比以前描述的更大的异质性。缺失导致 pMo 的选择性扩张和这些细胞中特定信号通路的改变,揭示了 LYN 在 pMo 生理学中的关键作用。LYN 调节 pMo 的作用是细胞内的,与 -缺陷型 pMo 的循环半衰期增加相关。此外,单细胞 RNA 测序揭示了 缺失型单核细胞基因表达谱的显著改变,涉及 pMo 发育、存活和功能的基因上调。缺失还导致主动脉相关 pMo 的显著增加,并保护 小鼠免受高脂肪饮食诱导的动脉粥样硬化。
总之,我们的数据确定 LYN 是 pMo 发育的关键调节因子,并且是 pMo 调节的炎症性疾病的潜在治疗靶点。