Wang Yan, Liao Qiufan, She Donghong, Lv Ziyu, Gong Yue, Ding Guanglong, Ye Wenbin, Chen Jinrui, Xiong Ziyu, Wang Guoping, Zhou Ye, Han Su-Ting
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China.
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15370-15379. doi: 10.1021/acsami.0c00635. Epub 2020 Mar 18.
To keep pace with the upcoming big-data era, the development of a device-level neuromorphic system with highly efficient computing paradigms is underway with numerous attempts. Synaptic transistors based on an all-solution processing method have received growing interest as building blocks for neuromorphic computing based on spikes. Here, we propose and experimentally demonstrated the dual operation mode in poly{2,2-(2,5-bis(2-octyldodecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-]pyrrole-1,4-diyl)dithieno[3,2-]thiophene-5,5-diyl--thiophen-2,5-diyl}(PDPPBTT)/ZnO junction-based synaptic transistor from ambipolar charge-trapping mechanism to analog the spiking interfere with synaptic plasticity. The heterojunction formed by PDPPBTT and ZnO layers serves as the basis for hole-enhancement and electron-enhancement modes of the synaptic transistor. Distinctive synaptic responses of paired-pulse facilitation (PPF) and paired-pulse depression (PPD) were configured to achieve the training/recognition function for digit image patterns at the device-to-system level. The experimental results indicate the potential application of the ambipolar transistor in future neuromorphic intelligent systems.
为了跟上即将到来的大数据时代,人们正在进行大量尝试,开发具有高效计算范式的设备级神经形态系统。基于全溶液处理方法的突触晶体管作为基于尖峰的神经形态计算的构建模块受到了越来越多的关注。在此,我们提出并通过实验证明了基于聚{2,2-(2,5-双(2-辛基十二烷基)-3,6-二氧代-2,3,5,6-四氢吡咯并[3,4-]吡咯-1,4-二基)二噻吩并[3,2-]噻吩-5,5-二基-噻吩-2,5-二基}(PDPPBTT)/ZnO结的突触晶体管中的双操作模式,该模式从双极性电荷俘获机制模拟尖峰干扰突触可塑性。由PDPPBTT和ZnO层形成的异质结作为突触晶体管的空穴增强和电子增强模式的基础。配置了独特的双脉冲易化(PPF)和双脉冲抑制(PPD)突触响应,以在设备到系统级别实现数字图像模式的训练/识别功能。实验结果表明双极晶体管在未来神经形态智能系统中的潜在应用。