Suppr超能文献

基于生成对抗网络的断层扫描重建

Tomographic reconstruction with a generative adversarial network.

作者信息

Yang Xiaogang, Kahnt Maik, Brückner Dennis, Schropp Andreas, Fam Yakub, Becher Johannes, Grunwaldt Jan Dierk, Sheppard Thomas L, Schroer Christian G

机构信息

FS-PETRA, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.

Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany.

出版信息

J Synchrotron Radiat. 2020 Mar 1;27(Pt 2):486-493. doi: 10.1107/S1600577520000831. Epub 2020 Feb 18.

Abstract

This paper presents a deep learning algorithm for tomographic reconstruction (GANrec). The algorithm uses a generative adversarial network (GAN) to solve the inverse of the Radon transform directly. It works for independent sinograms without additional training steps. The GAN has been developed to fit the input sinogram with the model sinogram generated from the predicted reconstruction. Good quality reconstructions can be obtained during the minimization of the fitting errors. The reconstruction is a self-training procedure based on the physics model, instead of on training data. The algorithm showed significant improvements in the reconstruction accuracy, especially for missing-wedge tomography acquired at less than 180° rotational range. It was also validated by reconstructing a missing-wedge X-ray ptychographic tomography (PXCT) data set of a macroporous zeolite particle, for which only 51 projections over 70° could be collected. The GANrec recovered the 3D pore structure with reasonable quality for further analysis. This reconstruction concept can work universally for most of the ill-posed inverse problems if the forward model is well defined, such as phase retrieval of in-line phase-contrast imaging.

摘要

本文提出了一种用于断层重建的深度学习算法(GANrec)。该算法使用生成对抗网络(GAN)直接求解拉东变换的逆问题。它适用于独立的正弦图,无需额外的训练步骤。已开发的GAN用于使输入正弦图与从预测重建生成的模型正弦图相匹配。在拟合误差最小化过程中可以获得高质量的重建结果。重建是基于物理模型而非训练数据的自训练过程。该算法在重建精度方面有显著提高,特别是对于在小于180°旋转范围内采集的缺楔断层扫描。通过重建大孔沸石颗粒的缺楔X射线叠层断层扫描(PXCT)数据集对其进行了验证,对于该数据集,在70°范围内仅能收集到51个投影。GANrec以合理的质量恢复了三维孔隙结构以供进一步分析。如果正向模型定义良好,这种重建概念可以普遍适用于大多数不适定的逆问题,例如在线相衬成像的相位恢复。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验