Suppr超能文献

用于X射线断层扫描的物理辅助生成对抗网络。

Physics-assisted generative adversarial network for X-ray tomography.

作者信息

Guo Zhen, Song Jung Ki, Barbastathis George, Glinsky Michael E, Vaughan Courtenay T, Larson Kurt W, Alpert Bradley K, Levine Zachary H

出版信息

Opt Express. 2022 Jun 20;30(13):23238-23259. doi: 10.1364/OE.460208.

Abstract

X-ray tomography is capable of imaging the interior of objects in three dimensions non-invasively, with applications in biomedical imaging, materials science, electronic inspection, and other fields. The reconstruction process can be an ill-conditioned inverse problem, requiring regularization to obtain satisfactory results. Recently, deep learning has been adopted for tomographic reconstruction. Unlike iterative algorithms which require a distribution that is known a priori, deep reconstruction networks can learn a prior distribution through sampling the training distributions. In this work, we develop a Physics-assisted Generative Adversarial Network (PGAN), a two-step algorithm for tomographic reconstruction. In contrast to previous efforts, our PGAN utilizes maximum-likelihood estimates derived from the measurements to regularize the reconstruction with both known physics and the learned prior. Compared with methods with less physics assisting in training, PGAN can reduce the photon requirement with limited projection angles to achieve a given error rate. The advantages of using a physics-assisted learned prior in X-ray tomography may further enable low-photon nanoscale imaging.

摘要

X射线断层扫描能够对物体内部进行非侵入性的三维成像,在生物医学成像、材料科学、电子检测等领域有着广泛应用。重建过程可能是一个不适定的逆问题,需要进行正则化处理才能获得满意的结果。近年来,深度学习已被应用于断层扫描重建。与需要先验已知分布的迭代算法不同,深度重建网络可以通过对训练分布进行采样来学习先验分布。在这项工作中,我们开发了一种物理辅助生成对抗网络(PGAN),这是一种用于断层扫描重建的两步算法。与之前的研究不同,我们的PGAN利用从测量中得出的最大似然估计,结合已知物理和学习到的先验来对重建进行正则化。与在训练中较少利用物理辅助的方法相比,PGAN可以在有限投影角度下减少光子需求,以达到给定的错误率。在X射线断层扫描中使用物理辅助学习先验的优势可能进一步实现低光子纳米级成像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验