School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, Virginia 23529, USA.
Genome Res. 2017 Nov;27(11):1904-1915. doi: 10.1101/gr.222422.117. Epub 2017 Oct 12.
We have developed a novel method that enables global subtelomere and haplotype-resolved analysis of telomere lengths at the single-molecule level. An in vitro CRISPR/Cas9 RNA-directed nickase system directs the specific labeling of human (TTAGGG)n DNA tracts in genomes that have also been barcoded using a separate nickase enzyme that recognizes a 7-bp motif genome-wide. High-throughput imaging and analysis of large DNA single molecules from genomes labeled in this fashion using a nanochannel array system permits mapping through subtelomere repeat element (SRE) regions to unique chromosomal DNA while simultaneously measuring the (TTAGGG)n tract length at the end of each large telomere-terminal DNA segment. The methodology also permits subtelomere and haplotype-resolved analyses of SRE organization and variation, providing a window into the population dynamics and potential functions of these complex and structurally variant telomere-adjacent DNA regions. At its current stage of development, the assay can be used to identify and characterize telomere length distributions of 30-35 discrete telomeres simultaneously and accurately. The assay's utility is demonstrated using early versus late passage and senescent human diploid fibroblasts, documenting the anticipated telomere attrition on a global telomere-by-telomere basis as well as identifying subtelomere-specific biases for critically short telomeres. Similarly, we present the first global single-telomere-resolved analyses of two cancer cell lines.
我们开发了一种新方法,能够在单分子水平上对端粒长度进行全球亚端粒和单体型解析分析。体外 CRISPR/Cas9 RNA 指导的核酸酶系统指导特定标记人类 (TTAGGG)n DNA 链,这些基因组也使用另一种核酸酶进行了条形码标记,该核酸酶识别全基因组中的 7 个碱基对基序。通过使用纳米通道阵列系统对以这种方式标记的基因组中的大 DNA 单分子进行高通量成像和分析,允许通过亚端粒重复元件 (SRE) 区域进行映射,同时测量每个大端粒末端 DNA 片段末端的 (TTAGGG)n 链长度。该方法还允许对 SRE 组织和变异进行亚端粒和单体型解析分析,为这些复杂且结构变异的端粒相邻 DNA 区域的群体动态和潜在功能提供了一个窗口。在其当前的开发阶段,该测定可以用于同时准确地识别和表征 30-35 个离散端粒的端粒长度分布。该测定的实用性通过早期与晚期传代和衰老的人类二倍体成纤维细胞进行了验证,记录了基于每个端粒的预期端粒损耗,以及确定了关键短端粒的亚端粒特异性偏差。同样,我们提出了两种癌细胞系的首个全球单端粒解析分析。