Suppr超能文献

利用混合模型、卫星和实地数据对华盛顿州2012年野火季节期间人群暴露于野火烟雾的时空估计。

Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data.

作者信息

Lassman William, Ford Bonne, Gan Ryan W, Pfister Gabriele, Magzamen Sheryl, Fischer Emily V, Pierce Jeffrey R

机构信息

Department of Atmospheric Science Colorado State University Fort Collins Colorado USA.

Department of Environmental and Radiological Health Colorado State University Fort Collins Colorado USA.

出版信息

Geohealth. 2017 May 31;1(3):106-121. doi: 10.1002/2017GH000049. eCollection 2017 May.

Abstract

In the western U.S., smoke from wild and prescribed fires can severely degrade air quality. Due to changes in climate and land management, wildfires have increased in frequency and severity, and this trend is expected to continue. Consequently, wildfires are expected to become an increasingly important source of air pollutants in the western U.S. Hence, there is a need to develop a quantitative understanding of wildfire-smoke-specific health effects. A necessary step in this process is to determine who was exposed to wildfire smoke, the concentration of the smoke during exposure, and the duration of the exposure. Three different tools have been used in past studies to assess exposure to wildfire smoke: in situ measurements, satellite-based observations, and chemical-transport model (CTM) simulations. Each of these exposure-estimation tools has associated strengths and weakness. We investigate the utility of blending these tools together to produce estimates of PM exposure from wildfire smoke during the Washington 2012 fire season. For blending, we use a ridge-regression model and a geographically weighted ridge-regression model. We evaluate the performance of the three individual exposure-estimate techniques and the two blended techniques by using leave-one-out cross validation. We find that predictions based on in situ monitors are more accurate for this particular fire season than the CTM simulations and satellite-based observations because of the large number of monitors present; therefore, blending provides only marginal improvements above the in situ observations. However, we show that in hypothetical cases with fewer surface monitors, the two blending techniques can produce substantial improvement over any of the individual tools.

摘要

在美国西部,野火和规定火烧产生的烟雾会严重降低空气质量。由于气候和土地管理的变化,野火的发生频率和严重程度都有所增加,而且这种趋势预计还将持续。因此,野火预计将成为美国西部日益重要的空气污染物来源。所以,有必要对野火烟雾对健康的特定影响形成定量认识。这一过程中的一个必要步骤是确定哪些人接触到了野火烟雾、接触期间烟雾的浓度以及接触时长。过去的研究中使用了三种不同工具来评估对野火烟雾的接触情况:实地测量、基于卫星的观测以及化学传输模型(CTM)模拟。这些接触估计工具各有优缺点。我们研究了将这些工具结合起来以估算2012年华盛顿火灾季节野火烟雾造成的颗粒物接触量的效用。为了进行结合,我们使用了岭回归模型和地理加权岭回归模型。我们通过留一法交叉验证来评估三种单独的接触估计技术以及两种结合技术的性能。我们发现,由于存在大量监测器,对于这个特定的火灾季节,基于实地监测器的预测比CTM模拟和基于卫星的观测更准确;因此,结合方法相比实地观测仅能带来些许改善。然而,我们表明,在地面监测器较少的假设情况下,这两种结合技术相比任何一种单独的工具都能带来显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9422/7007107/41d5fa599e56/GH2-1-106-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验