Suppr超能文献

基于卷积神经网络的框架,采用空间随机失活以增强对运动想象分类中神经活动的解释。

CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification.

作者信息

Collazos-Huertas D F, Álvarez-Meza A M, Acosta-Medina C D, Castaño-Duque G A, Castellanos-Dominguez G

机构信息

Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales, Colombia.

Cultura de la Calidad en la Educación Research Group, Universidad Nacional de Colombia, Manizales, Colombia.

出版信息

Brain Inform. 2020 Sep 3;7(1):8. doi: 10.1186/s40708-020-00110-4.

Abstract

Interpretation of brain activity responses using motor imagery (MI) paradigms is vital for medical diagnosis and monitoring. Assessed by machine learning techniques, identification of imagined actions is hindered by substantial intra- and inter-subject variability. Here, we develop an architecture of Convolutional Neural Networks (CNN) with an enhanced interpretation of the spatial brain neural patterns that mainly contribute to the classification of MI tasks. Two methods of 2D-feature extraction from EEG data are contrasted: Power Spectral Density and Continuous Wavelet Transform. For preserving the spatial interpretation of extracting EEG patterns, we project the multi-channel data using a topographic interpolation. Besides, we include a spatial dropping algorithm to remove the learned weights that reflect the localities not engaged with the elicited brain response. We evaluate two labeled scenarios of MI tasks: bi-class and three-class. Obtained results in an MI database show that the thresholding strategy combined with Continuous Wavelet Transform improves the accuracy and enhances the interpretability of CNN architecture, showing that the highest contribution clusters over the sensorimotor cortex with a differentiated behavior of rhythms [Formula: see text] and [Formula: see text].

摘要

使用运动想象(MI)范式来解释大脑活动反应对于医学诊断和监测至关重要。通过机器学习技术评估时,想象动作的识别受到个体内和个体间显著变异性的阻碍。在此,我们开发了一种卷积神经网络(CNN)架构,对主要有助于MI任务分类的空间脑神经模式进行增强解释。对比了从脑电图(EEG)数据中提取二维特征的两种方法:功率谱密度和连续小波变换。为了保留提取的EEG模式的空间解释,我们使用地形插值对多通道数据进行投影。此外,我们纳入了一种空间丢弃算法,以去除反映与诱发脑反应无关区域的学习权重。我们评估了MI任务的两种标记场景:二分类和三分类。在一个MI数据库中获得的结果表明,与连续小波变换相结合的阈值策略提高了准确率,并增强了CNN架构的可解释性,表明最高贡献簇位于感觉运动皮层,具有不同的节律[公式:见正文]和[公式:见正文]行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验