Suppr超能文献

多水平模型(元分析)中应用多个随机效应:系统综述。

The application of meta-analytic (multi-level) models with multiple random effects: A systematic review.

机构信息

Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven, Etienne Sabbelaan 51, 8500, Kortrijk, Belgium.

ITEC, imec research group at KU Leuven, University of Leuven, Leuven, Belgium.

出版信息

Behav Res Methods. 2020 Oct;52(5):2031-2052. doi: 10.3758/s13428-020-01373-9.

Abstract

In meta-analysis, study participants are nested within studies, leading to a multilevel data structure. The traditional random effects model can be considered as a model with a random study effect, but additional random effects can be added in order to account for dependent effects sizes within or across studies. The goal of this systematic review is three-fold. First, we will describe how multilevel models with multiple random effects (i.e., hierarchical three-, four-, five-level models and cross-classified random effects models) are applied in meta-analysis. Second, we will illustrate how in some specific three-level meta-analyses, a more sophisticated model could have been used to deal with additional dependencies in the data. Third and last, we will describe the distribution of the characteristics of multilevel meta-analyses (e.g., distribution of the number of outcomes across studies or which dependencies are typically modeled) so that future simulation studies can simulate more realistic conditions. Results showed that four- or five-level or cross-classified random effects models are not often used although they might account better for the meta-analytic data structure of the analyzed datasets. Also, we found that the simulation studies done on multilevel meta-analysis with multiple random factors could have used more realistic simulation factor conditions. The implications of these results are discussed, and further suggestions are given.

摘要

在荟萃分析中,研究参与者嵌套在研究中,导致出现多层次数据结构。传统的随机效应模型可以被视为具有随机研究效应的模型,但可以添加额外的随机效应,以解释研究内或研究间依赖的效应大小。本系统评价的目的有三个。首先,我们将描述如何在荟萃分析中应用具有多个随机效应的多层次模型(即三级、四级、五级层次模型和交叉分类随机效应模型)。其次,我们将说明在某些特定的三级荟萃分析中,如何使用更复杂的模型来处理数据中的额外依赖关系。第三也是最后,我们将描述多层次荟萃分析的特征分布(例如,研究间结果数量的分布或通常建模的依赖关系),以便未来的模拟研究可以模拟更现实的条件。结果表明,尽管四级或五级或交叉分类随机效应模型可能更好地解释分析数据集的荟萃分析数据结构,但它们并不经常使用。此外,我们发现,针对具有多个随机因素的多层次荟萃分析进行的模拟研究可能使用了更现实的模拟因素条件。讨论了这些结果的意义,并提出了进一步的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验