Suppr超能文献

观察性研究中因果关系评估方法。

Methods for Evaluating Causality in Observational Studies.

机构信息

Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University of Mainz; Institute of Clinical Physiology of the Italian National Research Council, Lecce, Italy; Technical University Dresden, University Hospital Carl Gustav Carus, Medical Clinic 1, Dresden; Department of Pediatric Surgery, Faculty of Medicine, Johannes Gutenberg University of Mainz; Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg; Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, München.

出版信息

Dtsch Arztebl Int. 2020 Feb 14;116(7):101-107. doi: 10.3238/arztebl.2020.0101.

Abstract

BACKGROUND

In clinical medical research, causality is demonstrated b controlled trials (RCTs). Often, however, an RCT cannot be conducted for ethical reasons, and sometimes for practical reasons as well. In such cases, knowledge can be derived from an observational study instead. In this article, we present two methods that have not been widely used in medical research to date.

METHODS

The methods of assessing causal inferences in observational studies are described on the basis of publications retrieved by a selective literature search.

RESULTS

Two relatively new approaches-regression-discontinuity methods and interrupted time series-can be used to demonstrate a causal relationship under certain circumstances. The regression-discontinuity design is a quasi-experimental approach that can be applied if a continuous assignment variable is used with a threshold value. Patients are assigned to different treatment schemes on the basis of the threshold value. For assignment variables that are subject to random measurement error, it is assumed that, in a small interval around a threshold value, e.g., cholesterol values of 160 mg/dL, subjects are assigned essentially at random to one of two treatment groups. If patients with a value above the threshold are given a certain treatment, those with values below the threshold can serve as control group. Interrupted time series are a special type of regression-discontinuity design in which time is the assignment variable, and the threshold is a cutoff point. This is often an external event, such as the imposition of a smoking ban. A before-and-after comparison can be used to determine the effect of the intervention (e.g., the smoking ban) on health parameters such as the frequency of cardiovascular disease.

CONCLUSION

The approaches described here can be used to derive causal inferences ies. They should only be applied after the prerequisites for their use have been carefully checked.

摘要

背景

在临床医学研究中,因果关系是通过对照试验(RCT)来证明的。然而,由于伦理原因,有时也由于实际原因,无法进行 RCT。在这种情况下,可以从观察性研究中获得知识。本文介绍了两种迄今为止在医学研究中尚未广泛使用的方法。

方法

根据选择性文献检索中检索到的出版物,描述了评估观察性研究中因果关系的方法。

结果

两种相对较新的方法——回归间断法和中断时间序列法——可以在某些情况下用于证明因果关系。回归间断设计是一种准实验方法,如果使用连续分配变量和阈值,则可以应用该方法。根据阈值将患者分配到不同的治疗方案中。对于受到随机测量误差影响的分配变量,假设在阈值周围的小间隔内,例如胆固醇值为 160mg/dL,患者基本上是随机分配到两个治疗组之一。如果将高于阈值的患者给予某种治疗,则低于阈值的患者可以作为对照组。中断时间序列是一种特殊类型的回归间断设计,其中时间是分配变量,而阈值是截止点。这通常是一个外部事件,例如实施禁烟令。可以进行前后比较来确定干预(例如禁烟令)对心血管疾病等健康参数的影响。

结论

这里描述的方法可用于得出因果推论。只有在仔细检查了其使用前提后,才能应用这些方法。

相似文献

1
Methods for Evaluating Causality in Observational Studies.观察性研究中因果关系评估方法。
Dtsch Arztebl Int. 2020 Feb 14;116(7):101-107. doi: 10.3238/arztebl.2020.0101.
2
Observational Studies.观察性研究。
Respir Care. 2023 Nov;68(11):1585-1597. doi: 10.4187/respcare.11170. Epub 2023 Jun 20.
3
Regression Discontinuity for Causal Effect Estimation in Epidemiology.流行病学中因果效应估计的回归断点法
Curr Epidemiol Rep. 2016;3:233-241. doi: 10.1007/s40471-016-0080-x. Epub 2016 Aug 5.
5
Dirichlet process mixture models for regression discontinuity designs.Dirichlet 过程混合模型在回归不连续设计中的应用。
Stat Methods Med Res. 2023 Jan;32(1):55-70. doi: 10.1177/09622802221129044. Epub 2022 Nov 10.
8
Observational research--opportunities and limitations.观察性研究——机遇与局限。
J Diabetes Complications. 2013 Nov-Dec;27(6):642-8. doi: 10.1016/j.jdiacomp.2013.07.007. Epub 2013 Sep 19.
9
Causal inference from observational data.从观察数据进行因果推断。
Community Dent Oral Epidemiol. 2016 Oct;44(5):409-15. doi: 10.1111/cdoe.12231. Epub 2016 Apr 25.

引用本文的文献

3
Long-Term Obesity and Biological Aging in Young Adults.青年成年人的长期肥胖与生物衰老
JAMA Netw Open. 2025 Jul 1;8(7):e2520011. doi: 10.1001/jamanetworkopen.2025.20011.

本文引用的文献

2
The long and winding road to causality.通往因果关系的漫长而曲折之路。
Eur J Epidemiol. 2019 Jun;34(6):533-535. doi: 10.1007/s10654-019-00507-4.
3
Causal criteria: time has come for a revision.因果关系标准:是时候修订了。
Eur J Epidemiol. 2019 Jun;34(6):537-541. doi: 10.1007/s10654-018-00479-x. Epub 2019 Jan 16.
5
Cluster-Randomized Studies.群组随机对照研究。
Dtsch Arztebl Int. 2018 Mar 9;115(10):163-168. doi: 10.3238/arztebl.2018.0163.
6
Quasi-experimental study designs series-paper 7: assessing the assumptions.准实验研究设计系列论文7:评估假设
J Clin Epidemiol. 2017 Sep;89:53-66. doi: 10.1016/j.jclinepi.2017.02.017. Epub 2017 Mar 29.
8
Regression Discontinuity for Causal Effect Estimation in Epidemiology.流行病学中因果效应估计的回归断点法
Curr Epidemiol Rep. 2016;3:233-241. doi: 10.1007/s40471-016-0080-x. Epub 2016 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验