Suppr超能文献

一种基于miRNA和mRNA测序的肾癌生物标志物特征选择方法。

A miRNA- and mRNA-seq-Based Feature Selection Approach for Kidney Cancer Biomakers.

作者信息

Kim Shinuk

机构信息

Department of Civil Engineering, Sangmyung University, Cheonan, Republic of Korea.

出版信息

Cancer Inform. 2020 Feb 28;19:1176935120908301. doi: 10.1177/1176935120908301. eCollection 2020.

Abstract

Microarray data sets have been used for predicting cancer biomarkers. Yet, replication of the prediction has not been fully satisfied. Recently, new data sets called deep sequencing data sets have been generated, with an advantage of less noise in computational analysis. In this study, we analyzed the kidney miRNA and mRNA sequence data sets for predicting cancer markers using 5 different statistical feature selection methods. In the results, we obtained 3 mRNA- and 27 miRNA-based cancer biomarkers to compare with the normal samples. In addition, we clustered the kidney cancer subtypes using a nonnegative matrix factorization method and obtained significant results of survival analysis from the 2 separate groups including miRNA-342 and its target eukaryotic translation initiation factor 5A ().

摘要

微阵列数据集已被用于预测癌症生物标志物。然而,预测的重复性尚未得到充分满足。最近,产生了一种名为深度测序数据集的新数据集,其在计算分析中具有噪声较少的优势。在本研究中,我们使用5种不同的统计特征选择方法分析了肾脏miRNA和mRNA序列数据集以预测癌症标志物。结果,我们获得了3种基于mRNA和27种基于miRNA的癌症生物标志物,用于与正常样本进行比较。此外,我们使用非负矩阵分解方法对肾癌亚型进行聚类,并从包括miRNA - 342及其靶标真核生物翻译起始因子5A()的2个独立组中获得了显著的生存分析结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/7050029/8313459a51e9/10.1177_1176935120908301-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验