Suppr超能文献

使用纳米柱电极阵列对二维和三维神经元网络进行超阈值和亚阈值细胞内样记录。

Supra- and sub-threshold intracellular-like recording of 2D and 3D neuronal networks using nanopillar electrode arrays.

作者信息

Shukla Shivani, Schwartz Joshua L, Walsh Callum, Wong Wen Mai, Patel Vrund, Hsieh Yu-Peng, Onwuasoanya Chichi, Chen Shaoming, Offenhäusser Andreas, Cauwenberghs Gert, Santoro Francesca, Muotri Alysson R, Yeo Gene W, Chalasani Sreekanth H, Jahed Zeinab

机构信息

Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA.

出版信息

Microsyst Nanoeng. 2024 Dec 5;10(1):184. doi: 10.1038/s41378-024-00817-y.

Abstract

The brain integrates activity across networks of interconnected neurons to generate behavioral outputs. Several physiological and imaging-based approaches have been previously used to monitor responses of individual neurons. While these techniques can identify cellular responses greater than the neuron's action potential threshold, less is known about the events that are smaller than this threshold or are localized to subcellular compartments. Here we use NEAs to obtain temporary intracellular access to neurons allowing us to record information-rich data that indicates action potentials, and sub-threshold electrical activity. We demonstrate these recordings from primary hippocampal neurons, induced pluripotent stem cell-derived (iPSC) neurons, and iPSC-derived brain organoids. Moreover, our results show that our arrays can record activity from subcellular compartments of the neuron. We suggest that these data might enable us to correlate activity changes in individual neurons with network behavior, a key goal of systems neuroscience.

摘要

大脑整合相互连接的神经元网络中的活动以产生行为输出。此前已经使用了几种基于生理学和成像的方法来监测单个神经元的反应。虽然这些技术可以识别大于神经元动作电位阈值的细胞反应,但对于小于该阈值或局限于亚细胞区室的事件却知之甚少。在这里,我们使用纳米电极阵列(NEAs)来临时获得对神经元的细胞内访问,使我们能够记录指示动作电位和阈下电活动的信息丰富的数据。我们展示了来自原代海马神经元、诱导多能干细胞衍生(iPSC)神经元和iPSC衍生的脑类器官的这些记录。此外,我们的结果表明,我们的阵列可以记录来自神经元亚细胞区室的活动。我们认为,这些数据可能使我们能够将单个神经元的活动变化与网络行为相关联,这是系统神经科学的一个关键目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6469/11618331/4bcf5c39ef57/41378_2024_817_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验