Suppr超能文献

使用深度上下文表示学习估计突变对蛋白质-蛋白质相互作用的影响。

Mutation effect estimation on protein-protein interactions using deep contextualized representation learning.

作者信息

Zhou Guangyu, Chen Muhao, Ju Chelsea J T, Wang Zheng, Jiang Jyun-Yu, Wang Wei

机构信息

Department of Computer Science, University of California, Los Angeles, CA 90095, USA.

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

NAR Genom Bioinform. 2020 Jun;2(2):lqaa015. doi: 10.1093/nargab/lqaa015. Epub 2020 Mar 5.

Abstract

The functional impact of protein mutations is reflected on the alteration of conformation and thermodynamics of protein-protein interactions (PPIs). Quantifying the changes of two interacting proteins upon mutations is commonly carried out by computational approaches. Hence, extensive research efforts have been put to the extraction of energetic or structural features on proteins, followed by statistical learning methods to estimate the effects of mutations on PPI properties. Nonetheless, such features require extensive human labors and expert knowledge to obtain, and have limited abilities to reflect point mutations. We present an end-to-end deep learning framework, MuPIPR (Mutation Effects in Protein-protein Interaction PRediction Using Contextualized Representations), to estimate the effects of mutations on PPIs. MuPIPR incorporates a contextualized representation mechanism of amino acids to propagate the effects of a point mutation to surrounding amino acid representations, therefore amplifying the subtle change in a long protein sequence. On top of that, MuPIPR leverages a Siamese residual recurrent convolutional neural encoder to encode a wild-type protein pair and its mutation pair. Multi-layer perceptron regressors are applied to the protein pair representations to predict the quantifiable changes of PPI properties upon mutations. Experimental evaluations show that, with only sequence information, MuPIPR outperforms various state-of-the-art systems on estimating the changes of binding affinity for SKEMPI v1, and offers comparable performance on SKEMPI v2. Meanwhile, MuPIPR also demonstrates state-of-the-art performance on estimating the changes of buried surface areas. The software implementation is available at https://github.com/guangyu-zhou/MuPIPR.

摘要

蛋白质突变的功能影响反映在蛋白质-蛋白质相互作用(PPI)的构象和热力学变化上。通过计算方法通常可以量化突变后两个相互作用蛋白质的变化。因此,人们投入了大量研究精力来提取蛋白质的能量或结构特征,然后采用统计学习方法来估计突变对PPI性质的影响。然而,此类特征需要大量人力和专业知识才能获得,并且反映点突变的能力有限。我们提出了一个端到端的深度学习框架MuPIPR(使用上下文表示预测蛋白质-蛋白质相互作用中的突变效应),用于估计突变对PPI的影响。MuPIPR纳入了氨基酸的上下文表示机制,以将点突变的影响传播到周围氨基酸表示中,从而放大长蛋白质序列中的细微变化。在此基础上,MuPIPR利用暹罗残差循环卷积神经编码器对野生型蛋白质对及其突变对进行编码。多层感知器回归器应用于蛋白质对表示,以预测突变后PPI性质的可量化变化。实验评估表明,仅使用序列信息,MuPIPR在估计SKEMPI v1结合亲和力变化方面优于各种先进系统,在SKEMPI v2上表现相当。同时,MuPIPR在估计埋藏表面积变化方面也展示了先进的性能。软件实现可在https://github.com/guangyu-zhou/MuPIPR获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7c6/7671391/fdf7f9514f20/lqaa015fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验