Suppr超能文献

水解 Ce(IV)盐限制变形链球菌蔗糖依赖生物膜形成。

Hydrolyzed Ce(IV) salts limit sucrose-dependent biofilm formation by Streptococcus mutans.

机构信息

Department of Physics, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.

Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.

出版信息

J Inorg Biochem. 2020 May;206:110997. doi: 10.1016/j.jinorgbio.2020.110997. Epub 2020 Jan 11.

Abstract

Several studies have focused on the antimicrobial effects of cerium oxide nanoparticles (CeO-NP) but few have focused on their effects on bacteria under initial biofilm formation conditions. Streptococcus mutans is a prolific biofilm former contributing to dental caries in the presence of fermentable carbohydrates and is a recognized target for therapeutic intervention. CeO-NP derived solely from Ce(IV) salt hydrolysis were found to reduce adherent bacteria by approximately 40% while commercial dispersions of "bare" CeO-NP (e.g., 3 nm, 10-20 nm, 30 nm diameter) and Ce(NO)·6HO were either inactive or observed to slightly increase biofilm formation under similar in vitro conditions. Planktonic growth and dispersal assays support a non-bactericidal mode of biofilm inhibition active in the initial phases of S. mutans biofilm production. Human cell proliferation assays suggest only minor effects of hydrolyzed Ce(IV) salts on cellular metabolism at concentrations up to 1 mM Ce, with less observed toxicity compared to equimolar concentrations of AgNO. The results presented herein have implications in clinical dentistry.

摘要

已有多项研究聚焦于氧化铈纳米颗粒(CeO-NP)的抗菌效果,但鲜少关注其在细菌初始生物膜形成条件下的作用。变形链球菌是一种高产生物膜形成菌,在可发酵碳水化合物存在的情况下会导致龋齿,是治疗干预的公认靶点。研究发现,仅由 Ce(IV) 盐水解得到的 CeO-NP 可使黏附细菌减少约 40%,而商业分散的“裸”CeO-NP(例如 3nm、10-20nm、30nm 直径)和 Ce(NO)·6HO 在类似的体外条件下要么无活性,要么观察到略微增加生物膜形成。浮游生长和分散测定支持生物膜抑制的非杀菌模式,在 S. mutans 生物膜产生的初始阶段具有活性。人体细胞增殖测定表明,在高达 1mM Ce 的浓度下,Ce(IV) 盐的水解产物对细胞代谢的影响很小,与等摩尔浓度的 AgNO 相比,观察到的毒性更小。本文的研究结果对临床牙科具有重要意义。

相似文献

1
Hydrolyzed Ce(IV) salts limit sucrose-dependent biofilm formation by Streptococcus mutans.
J Inorg Biochem. 2020 May;206:110997. doi: 10.1016/j.jinorgbio.2020.110997. Epub 2020 Jan 11.
2
Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo.
Biomaterials. 2016 Sep;101:272-84. doi: 10.1016/j.biomaterials.2016.05.051. Epub 2016 Jun 2.
4
Nanoceria Aggregate Formulation Promotes Buffer Stability, Cell Clustering, and Reduction of Adherent Biofilm in .
ACS Biomater Sci Eng. 2023 Aug 14;9(8):4686-4697. doi: 10.1021/acsbiomaterials.3c00174. Epub 2023 Jul 14.
5
In vitro Cariostatic effects of cinnamon water extract on nicotine-induced Streptococcus mutans biofilm.
BMC Complement Med Ther. 2020 Feb 11;20(1):45. doi: 10.1186/s12906-020-2840-x.
6
Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro.
Biomed Res Int. 2016;2016:5829823. doi: 10.1155/2016/5829823. Epub 2016 May 25.
7
Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms.
PLoS One. 2015 Jul 29;10(7):e0133886. doi: 10.1371/journal.pone.0133886. eCollection 2015.
8
Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01423-18. Print 2018 Dec 15.
9
Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.
Antimicrob Agents Chemother. 2015 Oct 19;60(1):126-35. doi: 10.1128/AAC.00919-15. Print 2016 Jan.
10
Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.
Microb Pathog. 2016 Sep;98:45-9. doi: 10.1016/j.micpath.2016.06.027. Epub 2016 Jun 25.

引用本文的文献

1
Inhibitory effect of on biofilm and mechanism exploration through metabolomic and transcriptomic analyses.
Front Microbiol. 2024 Jul 3;15:1435503. doi: 10.3389/fmicb.2024.1435503. eCollection 2024.
2
Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases.
Biomedicines. 2021 Oct 10;9(10):1435. doi: 10.3390/biomedicines9101435.
3
Nanostructured Ceria: Biomolecular Templates and (Bio)applications.
Nanomaterials (Basel). 2021 Aug 31;11(9):2259. doi: 10.3390/nano11092259.
4
Thermodynamic Surface Analyses to Inform Biofilm Resistance.
iScience. 2020 Oct 20;23(11):101702. doi: 10.1016/j.isci.2020.101702. eCollection 2020 Nov 20.

本文引用的文献

2
Synthesis and biomedical applications of nanoceria, a redox active nanoparticle.
J Nanobiotechnology. 2019 Jul 10;17(1):84. doi: 10.1186/s12951-019-0516-9.
3
Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
ACS Nano. 2019 Mar 26;13(3):3151-3161. doi: 10.1021/acsnano.8b08668. Epub 2019 Feb 25.
4
Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response.
Environ Sci Pollut Res Int. 2019 Mar;26(9):9293-9304. doi: 10.1007/s11356-019-04340-w. Epub 2019 Feb 5.
5
The Biology of .
Microbiol Spectr. 2019 Jan;7(1). doi: 10.1128/microbiolspec.GPP3-0051-2018.
6
Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa.
Environ Sci Pollut Res Int. 2018 Dec;25(34):34765-34776. doi: 10.1007/s11356-018-3418-8. Epub 2018 Oct 15.
7
Strategies and relative mechanisms to attenuate the bioaccumulation and biotoxicity of ceria nanoparticles in wastewater biofilms.
Bioresour Technol. 2018 Oct;265:102-109. doi: 10.1016/j.biortech.2018.05.107. Epub 2018 Jun 1.
8
Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: A Systematic Review.
Biomed Res Int. 2018 Jan 23;2018:1923606. doi: 10.1155/2018/1923606. eCollection 2018.
9
The biocorona: a challenge for the biomedical application of nanoparticles.
Nanotechnol Rev. 2017 Aug;6(4):345-353. doi: 10.1515/ntrev-2016-0098. Epub 2017 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验